Loading…
The O2-scavenging Flavodiiron Protein in the Human Parasite Giardia intestinalis
The flavodiiron proteins (FDP) are widespread among strict or facultative anaerobic prokaryotes, where they are involved in the response to nitrosative and/or oxidative stress. Unexpectedly, FDPs were fairly recently identified in a restricted group of microaerobic protozoa, including Giardia intest...
Saved in:
Published in: | The Journal of biological chemistry 2008-02, Vol.283 (7), p.4061-4068 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The flavodiiron proteins (FDP) are widespread among strict or facultative anaerobic prokaryotes, where they are involved in the response to nitrosative and/or oxidative stress. Unexpectedly, FDPs were fairly recently identified in a restricted group of microaerobic protozoa, including Giardia intestinalis, the causative agent of the human infectious disease giardiasis. The FDP from Giardia was expressed, purified, and extensively characterized by x-ray crystallography, stopped-flow spectroscopy, respirometry, and NO amperometry. Contrary to flavorubredoxin, the FDP from Escherichia coli, the enzyme from Giardia has high O2-reductase activity (>40 s-1), but very low NO-reductase activity (∼0.2 s-1); O2 reacts with the reduced protein quite rapidly (milliseconds) and with high affinity (Km ≤ 2 μm), producing H2O. The three-dimensional structure of the oxidized protein determined at 1.9Å resolution shows remarkable similarities with prokaryotic FDPs. Consistent with HPLC analysis, the enzyme is a dimer of dimers with FMN and the non-heme di-iron site topologically close at the monomer-monomer interface. Unlike the FDP from Desulfovibrio gigas, the residue His-90 is a ligand of the di-iron site, in contrast with the proposal that ligation of this histidine is crucial for a preferential specificity for NO. We propose that in G. intestinalis the primary function of FDP is to efficiently scavenge O2, allowing this microaerobic parasite to survive in the human small intestine, thus promoting its pathogenicity. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M705605200 |