Loading…
Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: from synthetic organic chemistry to compounds with anticancer potential
The quinone reductase enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones. This Perspective briefly reviews the structure and mechanism, physiological role, and upregulation and induction of the enzyme, but focuses on the...
Saved in:
Published in: | Organic & biomolecular chemistry 2008-01, Vol.6 (4), p.637-656 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quinone reductase enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones. This Perspective briefly reviews the structure and mechanism, physiological role, and upregulation and induction of the enzyme, but focuses on the synthesis of new heterocyclic quinones and their metabolism by recombinant human NQO1. Thus a range of indolequinones, some of which are novel analogues of mitomycin C, benzimidazolequinones, benzothiazolequinones and quinolinequinones have been prepared and evaluated, leading to detailed knowledge of the structural requirements for efficient metabolism by the enzyme. Potent mechanism-based inhibitors (suicide substrates) of NQO1 have also been developed. These indolequinones irreversibly alkylate the protein, preventing its function both in standard enzyme assays and also in cells. Some of these quinones are also potent inhibitors of growth of human pancreatic cancer cells, suggesting a potential role for such compounds as therapeutic agents. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/b715270a |