Loading…

Sequential Silylcarbocyclization/Silicon-Based Cross-Coupling Reactions

A sequential rhodium-catalyzed silylcarbocyclization of enynes parlayed with a palladium-catalyzed, silicon-based cross-coupling reaction has been developed for the synthesis of highly substituted cyclopentanes. 1,6-Enynes reacted with benzyldimethylsilane in the presence of rhodium catalysts to aff...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2007-03, Vol.129 (12), p.3737-3744
Main Authors: Denmark, Scott E, Liu, Jack Hung-Chang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A sequential rhodium-catalyzed silylcarbocyclization of enynes parlayed with a palladium-catalyzed, silicon-based cross-coupling reaction has been developed for the synthesis of highly substituted cyclopentanes. 1,6-Enynes reacted with benzyldimethylsilane in the presence of rhodium catalysts to afford five-membered rings bearing a (Z)-alkylidenylbenzylsilyl group. A variety of substitution patterns and heteroatom substituents were compatible. The silylcarbocyclization in which an unsaturated ester participated was also achieved. The resulting alkylidenylsilanes underwent palladium-catalyzed cross-coupling using tetra-n-butylammonium fluoride. This cross-coupling reaction displayed a broad substrate scope. A wide variety of substitution patterns, electronic properties, and heteroatoms were compatible. All of the cross-coupling reactions proceeded in high yields under very mild conditions and with complete retention of double bond configuration, resulting in densely functionalized 3-(Z)-benzylidenecyclopentanes and heterocycles.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja067854p