Loading…
Expression of the MAST family of serine/threonine kinases
Abstract The Microtubule-Associated Serine/Threonine Kinase family (MAST1–4, and MAST-like) is characterised by the presence of a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain (PDZ). This latter domain gives the MAST family the capacity to s...
Saved in:
Published in: | Brain research 2008-02, Vol.1195, p.12-19 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The Microtubule-Associated Serine/Threonine Kinase family (MAST1–4, and MAST-like) is characterised by the presence of a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain (PDZ). This latter domain gives the MAST family the capacity to scaffold its own kinase activity. In the present study we have profiled the mRNA for each member of the MAST family transcripts across various tissues, with particular focus on rodent brain. Reverse-transcriptase polymerase chain reaction (RT-PCR) has shown equivalent patterns of expression for MAST1 and 2 in multiple tissues. Both MAST3 and 4 show more distinct expression in several tissues, and MAST-like appears to be predominantly expressed in heart and testis. In situ hybridisation reveals overlapping expression of MAST1 and 2 in specific brain regions. In contrast, MAST3 shows selective expression in the striatum and cerebral cortex. MAST4 also exhibits distinct expression in oligodendrocytes of white matter containing brain regions. In keeping with previous results, this family member also shows increased expression in the hippocampus following seizure-like activity. Our analysis of MAST family expression provides support for the role of these kinases in a broad range of neural functions. |
---|---|
ISSN: | 0006-8993 1872-6240 |
DOI: | 10.1016/j.brainres.2007.12.027 |