Loading…

Microwave-accelerated surface plasmon-coupled directional luminescence 2: A platform technology for ultra fast and sensitive target DNA detection in whole blood

The application of Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) to fast and sensitive DNA hybridization assays in buffer and whole blood is presented. In this regard, a model DNA hybridization assay whereby a fluorophore-labeled target ssDNA specific to human immunodeficiency...

Full description

Saved in:
Bibliographic Details
Published in:Journal of immunological methods 2008-02, Vol.331 (1), p.103-113
Main Authors: Aslan, Kadir, Previte, Michael J.R., Zhang, Yongxia, Geddes, Chris D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The application of Microwave-Accelerated Surface Plasmon-Coupled Luminescence (MA-SPCL) to fast and sensitive DNA hybridization assays in buffer and whole blood is presented. In this regard, a model DNA hybridization assay whereby a fluorophore-labeled target ssDNA specific to human immunodeficiency, Hepatitis C (Hep C), is probed by an anchor probe immobilized on thin gold films, is driven to completion within 1 min with microwave heating, as compared to an identical assay completed in ≈ 4 h at room temperature. Finite-Difference Time-Domain calculations show that gold disks are preferentially heated around the edges creating a temperature gradient along the disks, which in turn results in the larger influx of complementary DNA towards anchor probe-modified surface. Thermal images of the assay platform during microwave heating also provide additional information on the microwave heating pattern in the microwave cavity. Finally, the effects of low power microwave heating on the ability of DNA to re-hybridize with the complimentary target on the surface gold films, which allows the multiple re-use of the gold films, is demonstrated. The MA-SPCL technique offers an alternative approach to current DNA based detection technologies, especially when speed and sensitivity are required, such as in the identification of DNA or even RNA-based diseases using whole blood samples that affect human health.
ISSN:0022-1759
1872-7905
DOI:10.1016/j.jim.2007.12.004