Loading…
Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids
Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting i...
Saved in:
Published in: | Langmuir 2008-03, Vol.24 (5), p.2248-2251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193 |
---|---|
cites | cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193 |
container_end_page | 2251 |
container_issue | 5 |
container_start_page | 2248 |
container_title | Langmuir |
container_volume | 24 |
creator | Verma, Mohan K. S Ganneboyina, Sambasiva Rao Rakshith Ghatak, Animangsu |
description | Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications. |
doi_str_mv | 10.1021/la702895w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70335749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70335749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EgrIceAGUC0gcAnZsZ-IjKrvKXsTRcryAIU2K3Qh4exK1KhdOo5n59M_MPwjtEnxEcEaOKwU4KwT_WkEDwjOc8iKDVTTAwGgKLKcbaDPGd4yxoEysow1SEAFA8gG6Hb8Fa9NTP7F19E2tquSmrWb-zVZe94nXoXFV643XXfJtQ0xcE5JHNfWmL_j6NWlcMvKfHRO30ZpTVbQ7i7iFns_PxsPLdHR3cTU8GaWKFmSWlsZobkwJLmc4MwxK54SyoBgvaSFKyIFT7UDb3HGDLc2YE7jr5wpTIIJuoYO57jQ0n62NMznxUduqUrVt2igBU8qB9eDhHOzOiDFYJ6fBT1T4kQTL3jy5NK9j9xaibTmx5o9cuNUB-wtAxc4cF1StfVxyGSYM56Ifms45H2f2e9lX4UPmQIHL8f2TzJ5uHorrl0s5_tNVOsr3pg3dG-I_C_4CnzmSuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70335749</pqid></control><display><type>article</type><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</creator><creatorcontrib>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</creatorcontrib><description>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702895w</identifier><identifier>PMID: 18197716</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Equipment Design ; Exact sciences and technology ; General and physical chemistry ; Microfluidics - instrumentation ; Microfluidics - methods ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-03, Vol.24 (5), p.2248-2251</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</citedby><cites>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20140699$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18197716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Mohan K. S</creatorcontrib><creatorcontrib>Ganneboyina, Sambasiva Rao</creatorcontrib><creatorcontrib>Rakshith</creatorcontrib><creatorcontrib>Ghatak, Animangsu</creatorcontrib><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkclOwzAQhi0EgrIceAGUC0gcAnZsZ-IjKrvKXsTRcryAIU2K3Qh4exK1KhdOo5n59M_MPwjtEnxEcEaOKwU4KwT_WkEDwjOc8iKDVTTAwGgKLKcbaDPGd4yxoEysow1SEAFA8gG6Hb8Fa9NTP7F19E2tquSmrWb-zVZe94nXoXFV643XXfJtQ0xcE5JHNfWmL_j6NWlcMvKfHRO30ZpTVbQ7i7iFns_PxsPLdHR3cTU8GaWKFmSWlsZobkwJLmc4MwxK54SyoBgvaSFKyIFT7UDb3HGDLc2YE7jr5wpTIIJuoYO57jQ0n62NMznxUduqUrVt2igBU8qB9eDhHOzOiDFYJ6fBT1T4kQTL3jy5NK9j9xaibTmx5o9cuNUB-wtAxc4cF1StfVxyGSYM56Ifms45H2f2e9lX4UPmQIHL8f2TzJ5uHorrl0s5_tNVOsr3pg3dG-I_C_4CnzmSuA</recordid><startdate>20080304</startdate><enddate>20080304</enddate><creator>Verma, Mohan K. S</creator><creator>Ganneboyina, Sambasiva Rao</creator><creator>Rakshith</creator><creator>Ghatak, Animangsu</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080304</creationdate><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><author>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Mohan K. S</creatorcontrib><creatorcontrib>Ganneboyina, Sambasiva Rao</creatorcontrib><creatorcontrib>Rakshith</creatorcontrib><creatorcontrib>Ghatak, Animangsu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Mohan K. S</au><au>Ganneboyina, Sambasiva Rao</au><au>Rakshith</au><au>Ghatak, Animangsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-03-04</date><risdate>2008</risdate><volume>24</volume><issue>5</issue><spage>2248</spage><epage>2251</epage><pages>2248-2251</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18197716</pmid><doi>10.1021/la702895w</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2008-03, Vol.24 (5), p.2248-2251 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_70335749 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Chemistry Colloidal state and disperse state Equipment Design Exact sciences and technology General and physical chemistry Microfluidics - instrumentation Microfluidics - methods Surface physical chemistry |
title | Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Multihelical%20Microfluidic%20Mixers%20for%20Rapid%20Mixing%20of%20Liquids&rft.jtitle=Langmuir&rft.au=Verma,%20Mohan%20K.%20S&rft.date=2008-03-04&rft.volume=24&rft.issue=5&rft.spage=2248&rft.epage=2251&rft.pages=2248-2251&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702895w&rft_dat=%3Cproquest_cross%3E70335749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70335749&rft_id=info:pmid/18197716&rfr_iscdi=true |