Loading…

Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids

Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting i...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-03, Vol.24 (5), p.2248-2251
Main Authors: Verma, Mohan K. S, Ganneboyina, Sambasiva Rao, Rakshith, Ghatak, Animangsu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193
cites cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193
container_end_page 2251
container_issue 5
container_start_page 2248
container_title Langmuir
container_volume 24
creator Verma, Mohan K. S
Ganneboyina, Sambasiva Rao
Rakshith
Ghatak, Animangsu
description Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.
doi_str_mv 10.1021/la702895w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70335749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70335749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</originalsourceid><addsrcrecordid>eNptkclOwzAQhi0EgrIceAGUC0gcAnZsZ-IjKrvKXsTRcryAIU2K3Qh4exK1KhdOo5n59M_MPwjtEnxEcEaOKwU4KwT_WkEDwjOc8iKDVTTAwGgKLKcbaDPGd4yxoEysow1SEAFA8gG6Hb8Fa9NTP7F19E2tquSmrWb-zVZe94nXoXFV643XXfJtQ0xcE5JHNfWmL_j6NWlcMvKfHRO30ZpTVbQ7i7iFns_PxsPLdHR3cTU8GaWKFmSWlsZobkwJLmc4MwxK54SyoBgvaSFKyIFT7UDb3HGDLc2YE7jr5wpTIIJuoYO57jQ0n62NMznxUduqUrVt2igBU8qB9eDhHOzOiDFYJ6fBT1T4kQTL3jy5NK9j9xaibTmx5o9cuNUB-wtAxc4cF1StfVxyGSYM56Ifms45H2f2e9lX4UPmQIHL8f2TzJ5uHorrl0s5_tNVOsr3pg3dG-I_C_4CnzmSuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70335749</pqid></control><display><type>article</type><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</creator><creatorcontrib>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</creatorcontrib><description>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702895w</identifier><identifier>PMID: 18197716</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Equipment Design ; Exact sciences and technology ; General and physical chemistry ; Microfluidics - instrumentation ; Microfluidics - methods ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-03, Vol.24 (5), p.2248-2251</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</citedby><cites>FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20140699$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18197716$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, Mohan K. S</creatorcontrib><creatorcontrib>Ganneboyina, Sambasiva Rao</creatorcontrib><creatorcontrib>Rakshith</creatorcontrib><creatorcontrib>Ghatak, Animangsu</creatorcontrib><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkclOwzAQhi0EgrIceAGUC0gcAnZsZ-IjKrvKXsTRcryAIU2K3Qh4exK1KhdOo5n59M_MPwjtEnxEcEaOKwU4KwT_WkEDwjOc8iKDVTTAwGgKLKcbaDPGd4yxoEysow1SEAFA8gG6Hb8Fa9NTP7F19E2tquSmrWb-zVZe94nXoXFV643XXfJtQ0xcE5JHNfWmL_j6NWlcMvKfHRO30ZpTVbQ7i7iFns_PxsPLdHR3cTU8GaWKFmSWlsZobkwJLmc4MwxK54SyoBgvaSFKyIFT7UDb3HGDLc2YE7jr5wpTIIJuoYO57jQ0n62NMznxUduqUrVt2igBU8qB9eDhHOzOiDFYJ6fBT1T4kQTL3jy5NK9j9xaibTmx5o9cuNUB-wtAxc4cF1StfVxyGSYM56Ifms45H2f2e9lX4UPmQIHL8f2TzJ5uHorrl0s5_tNVOsr3pg3dG-I_C_4CnzmSuA</recordid><startdate>20080304</startdate><enddate>20080304</enddate><creator>Verma, Mohan K. S</creator><creator>Ganneboyina, Sambasiva Rao</creator><creator>Rakshith</creator><creator>Ghatak, Animangsu</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080304</creationdate><title>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</title><author>Verma, Mohan K. S ; Ganneboyina, Sambasiva Rao ; Rakshith ; Ghatak, Animangsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, Mohan K. S</creatorcontrib><creatorcontrib>Ganneboyina, Sambasiva Rao</creatorcontrib><creatorcontrib>Rakshith</creatorcontrib><creatorcontrib>Ghatak, Animangsu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Mohan K. S</au><au>Ganneboyina, Sambasiva Rao</au><au>Rakshith</au><au>Ghatak, Animangsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-03-04</date><risdate>2008</risdate><volume>24</volume><issue>5</issue><spage>2248</spage><epage>2251</epage><pages>2248-2251</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18197716</pmid><doi>10.1021/la702895w</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-03, Vol.24 (5), p.2248-2251
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_70335749
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Colloidal state and disperse state
Equipment Design
Exact sciences and technology
General and physical chemistry
Microfluidics - instrumentation
Microfluidics - methods
Surface physical chemistry
title Three-Dimensional Multihelical Microfluidic Mixers for Rapid Mixing of Liquids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensional%20Multihelical%20Microfluidic%20Mixers%20for%20Rapid%20Mixing%20of%20Liquids&rft.jtitle=Langmuir&rft.au=Verma,%20Mohan%20K.%20S&rft.date=2008-03-04&rft.volume=24&rft.issue=5&rft.spage=2248&rft.epage=2251&rft.pages=2248-2251&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702895w&rft_dat=%3Cproquest_cross%3E70335749%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a381t-bddc5ddb7f6402d47bff9ae7a45b389b76753cf7ce6f5d0e324f90e7a6a037193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70335749&rft_id=info:pmid/18197716&rfr_iscdi=true