Loading…

Hsp70 in the atrial neuroendocrine units of the snail, Achatina fulica

Heat shock proteins (Hsps) are evolutionary conserved peptides well known as molecular chaperones and stress proteins. Elevated levels of extracellular Hsps in blood plasma have been observed during the stress responses and some diseases. Information on the cellular sources of extracellular Hsps and...

Full description

Saved in:
Bibliographic Details
Published in:Cell biology international 2007-04, Vol.31 (4), p.413-419
Main Authors: Martynova, M.G., Bystrova, O.A., Shabelnikov, S.V., Margulis, B.A., Prokofjeva, D.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heat shock proteins (Hsps) are evolutionary conserved peptides well known as molecular chaperones and stress proteins. Elevated levels of extracellular Hsps in blood plasma have been observed during the stress responses and some diseases. Information on the cellular sources of extracellular Hsps and mechanisms regulating their release is still scanty. Here we showed the presence and localization of Hsp70 in the neuroendocrine system in the atrium of the snail, Achatina fulica. The occurrence of the peptide in snail atrium lysate was detected by Western blot analysis. Immunoperoxidase and immunogold staining demonstrated that Hsp70-immunoreactivity is mainly confined to the peculiar atrial neuroendocrine units which are formed by nerve fibers tightly contacted with large granular cells. Immunolabelling intensity differed in morphologically distinct types of secretory granules in the granular cells. The pictures of exocytosis of Hsp70-immunolabeled granules from the granular cells were observed. In nerve bundles, axon profiles with Hsp70-immunoreactive and those with non-immunoreactive neurosecretory granules were found. In addition, Hsp70-like material was also revealed in the granules of glia-interstitial cells that accompanied nerve fibers. Our findings provide an immuno-morphological basis for a role of Hsp70 in the functioning of the neuroendocrine system in the snail heart, and show that the atrial granular cells are a probable source of extracellular Hsp70 in the snail hemolymph.
ISSN:1065-6995
1095-8355
DOI:10.1016/j.cellbi.2007.01.027