Loading…
Designing metallic glass matrix composites with high toughness and tensile ductility
The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processabl...
Saved in:
Published in: | Nature (London) 2008-02, Vol.451 (7182), p.1085-1089 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193 |
---|---|
cites | cdi_FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193 |
container_end_page | 1089 |
container_issue | 7182 |
container_start_page | 1085 |
container_title | Nature (London) |
container_volume | 451 |
creator | Duan, Gang Lind, Mary-Laura Wiest, Aaron Demetriou, Marios D Johnson, William L Suh, Jin-Yoo Hofmann, Douglas C |
description | The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity ( |
doi_str_mv | 10.1038/nature06598 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70343763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189705178</galeid><sourcerecordid>A189705178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193</originalsourceid><addsrcrecordid>eNp10s2L1DAUAPAgijuunrxLFRREuyZt0qTHYfxaWBR0xGPIpK-dLGk6m6S4-9-bocPOjIzkEEh-eXl5eQg9J_iC4FJ8cCqOHnDFavEAzQjlVU4rwR-iGcaFyLEoqzP0JIRrjDEjnD5GZ0SUmDGKZ2j5EYLpnHFd1kNU1hqddVaFkPUqenOb6aHfDMFECNkfE9fZ2nTrLA5jt3aQlHJNFsEFYyFrRh2NNfHuKXrUKhvg2W4-R78-f1ouvuZX379cLuZXua6IiLloaoaBFJgUtS5SmpVmLabQtAR0SVYVJUxUasUaBkw3RakK3NIV561mpCV1eY7eTHE3frgZIUTZm6DBWuVgGIPkuKQlr8oEX_0Dr4fRu5SbLDBNFePFFuUT6pQFaVw7RK90Bw68soODNr1Rzomo-baMYh_0yOuNuZGH6OIESqOB3uiTUd8eHUgmwm3s1BiCvPz549i--7-dL38vvp3U2g8heGjlxpte-TtJsNx2kjzopKRf7Eo2rnpo9nbXOgm83gEVtLKtV06bcO_SrxJM-da9n1xIW64Dv6_96XtfTnxavI93aP4CKOzpGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204476723</pqid></control><display><type>article</type><title>Designing metallic glass matrix composites with high toughness and tensile ductility</title><source>Nature.com</source><creator>Duan, Gang ; Lind, Mary-Laura ; Wiest, Aaron ; Demetriou, Marios D ; Johnson, William L ; Suh, Jin-Yoo ; Hofmann, Douglas C</creator><creatorcontrib>Duan, Gang ; Lind, Mary-Laura ; Wiest, Aaron ; Demetriou, Marios D ; Johnson, William L ; Suh, Jin-Yoo ; Hofmann, Douglas C</creatorcontrib><description>The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of ∼1 GPa, tensile ductility of ∼2-3 per cent, and an enhanced mode I fracture toughness of K1C 40 MPa m1/2 were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K1C up to ∼170 MPa m1/2, and fracture energies for crack propagation as high as G1C 340 kJ m-2. The K1C and G1C values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature06598</identifier><identifier>PMID: 18305540</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Alloys ; Composite materials ; Condensed matter: structure, mechanical and thermal properties ; Deformation ; Deformation and plasticity (including yield, ductility, and superplasticity) ; Dendrites ; Ductility ; Exact sciences and technology ; Humanities and Social Sciences ; letter ; Materials science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; multidisciplinary ; Optimization ; Physics ; Plasticity ; Science ; Science (multidisciplinary) ; Strain ; Structural engineering ; Tension ; Titanium ; Zirconium</subject><ispartof>Nature (London), 2008-02, Vol.451 (7182), p.1085-1089</ispartof><rights>Springer Nature Limited 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 28, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193</citedby><cites>FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20110470$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18305540$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duan, Gang</creatorcontrib><creatorcontrib>Lind, Mary-Laura</creatorcontrib><creatorcontrib>Wiest, Aaron</creatorcontrib><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><creatorcontrib>Suh, Jin-Yoo</creatorcontrib><creatorcontrib>Hofmann, Douglas C</creatorcontrib><title>Designing metallic glass matrix composites with high toughness and tensile ductility</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of ∼1 GPa, tensile ductility of ∼2-3 per cent, and an enhanced mode I fracture toughness of K1C 40 MPa m1/2 were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K1C up to ∼170 MPa m1/2, and fracture energies for crack propagation as high as G1C 340 kJ m-2. The K1C and G1C values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.</description><subject>Alloys</subject><subject>Composite materials</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Deformation</subject><subject>Deformation and plasticity (including yield, ductility, and superplasticity)</subject><subject>Dendrites</subject><subject>Ductility</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Materials science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>multidisciplinary</subject><subject>Optimization</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Strain</subject><subject>Structural engineering</subject><subject>Tension</subject><subject>Titanium</subject><subject>Zirconium</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp10s2L1DAUAPAgijuunrxLFRREuyZt0qTHYfxaWBR0xGPIpK-dLGk6m6S4-9-bocPOjIzkEEh-eXl5eQg9J_iC4FJ8cCqOHnDFavEAzQjlVU4rwR-iGcaFyLEoqzP0JIRrjDEjnD5GZ0SUmDGKZ2j5EYLpnHFd1kNU1hqddVaFkPUqenOb6aHfDMFECNkfE9fZ2nTrLA5jt3aQlHJNFsEFYyFrRh2NNfHuKXrUKhvg2W4-R78-f1ouvuZX379cLuZXua6IiLloaoaBFJgUtS5SmpVmLabQtAR0SVYVJUxUasUaBkw3RakK3NIV561mpCV1eY7eTHE3frgZIUTZm6DBWuVgGIPkuKQlr8oEX_0Dr4fRu5SbLDBNFePFFuUT6pQFaVw7RK90Bw68soODNr1Rzomo-baMYh_0yOuNuZGH6OIESqOB3uiTUd8eHUgmwm3s1BiCvPz549i--7-dL38vvp3U2g8heGjlxpte-TtJsNx2kjzopKRf7Eo2rnpo9nbXOgm83gEVtLKtV06bcO_SrxJM-da9n1xIW64Dv6_96XtfTnxavI93aP4CKOzpGA</recordid><startdate>20080228</startdate><enddate>20080228</enddate><creator>Duan, Gang</creator><creator>Lind, Mary-Laura</creator><creator>Wiest, Aaron</creator><creator>Demetriou, Marios D</creator><creator>Johnson, William L</creator><creator>Suh, Jin-Yoo</creator><creator>Hofmann, Douglas C</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20080228</creationdate><title>Designing metallic glass matrix composites with high toughness and tensile ductility</title><author>Duan, Gang ; Lind, Mary-Laura ; Wiest, Aaron ; Demetriou, Marios D ; Johnson, William L ; Suh, Jin-Yoo ; Hofmann, Douglas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alloys</topic><topic>Composite materials</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Deformation</topic><topic>Deformation and plasticity (including yield, ductility, and superplasticity)</topic><topic>Dendrites</topic><topic>Ductility</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Materials science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>multidisciplinary</topic><topic>Optimization</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Strain</topic><topic>Structural engineering</topic><topic>Tension</topic><topic>Titanium</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Gang</creatorcontrib><creatorcontrib>Lind, Mary-Laura</creatorcontrib><creatorcontrib>Wiest, Aaron</creatorcontrib><creatorcontrib>Demetriou, Marios D</creatorcontrib><creatorcontrib>Johnson, William L</creatorcontrib><creatorcontrib>Suh, Jin-Yoo</creatorcontrib><creatorcontrib>Hofmann, Douglas C</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Gang</au><au>Lind, Mary-Laura</au><au>Wiest, Aaron</au><au>Demetriou, Marios D</au><au>Johnson, William L</au><au>Suh, Jin-Yoo</au><au>Hofmann, Douglas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing metallic glass matrix composites with high toughness and tensile ductility</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-02-28</date><risdate>2008</risdate><volume>451</volume><issue>7182</issue><spage>1085</spage><epage>1089</epage><pages>1085-1089</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The selection and design of modern high-performance structural engineering materials is driven by optimizing combinations of mechanical properties such as strength, ductility, toughness, elasticity and requirements for predictable and graceful (non-catastrophic) failure in service. Highly processable bulk metallic glasses (BMGs) are a new class of engineering materials and have attracted significant technological interest. Although many BMGs exhibit high strength and show substantial fracture toughness, they lack ductility and fail in an apparently brittle manner in unconstrained loading geometries. For instance, some BMGs exhibit significant plastic deformation in compression or bending tests, but all exhibit negligible plasticity (<0.5% strain) in uniaxial tension. To overcome brittle failure in tension, BMG-matrix composites have been introduced. The inhomogeneous microstructure with isolated dendrites in a BMG matrix stabilizes the glass against the catastrophic failure associated with unlimited extension of a shear band and results in enhanced global plasticity and more graceful failure. Tensile strengths of ∼1 GPa, tensile ductility of ∼2-3 per cent, and an enhanced mode I fracture toughness of K1C 40 MPa m1/2 were reported. Building on this approach, we have developed 'designed composites' by matching fundamental mechanical and microstructural length scales. Here, we report titanium-zirconium-based BMG composites with room-temperature tensile ductility exceeding 10 per cent, yield strengths of 1.2-1.5 GPa, K1C up to ∼170 MPa m1/2, and fracture energies for crack propagation as high as G1C 340 kJ m-2. The K1C and G1C values equal or surpass those achievable in the toughest titanium or steel alloys, placing BMG composites among the toughest known materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18305540</pmid><doi>10.1038/nature06598</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2008-02, Vol.451 (7182), p.1085-1089 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_70343763 |
source | Nature.com |
subjects | Alloys Composite materials Condensed matter: structure, mechanical and thermal properties Deformation Deformation and plasticity (including yield, ductility, and superplasticity) Dendrites Ductility Exact sciences and technology Humanities and Social Sciences letter Materials science Mechanical and acoustical properties of condensed matter Mechanical properties of solids multidisciplinary Optimization Physics Plasticity Science Science (multidisciplinary) Strain Structural engineering Tension Titanium Zirconium |
title | Designing metallic glass matrix composites with high toughness and tensile ductility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A06%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20metallic%20glass%20matrix%20composites%20with%20high%20toughness%20and%20tensile%20ductility&rft.jtitle=Nature%20(London)&rft.au=Duan,%20Gang&rft.date=2008-02-28&rft.volume=451&rft.issue=7182&rft.spage=1085&rft.epage=1089&rft.pages=1085-1089&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06598&rft_dat=%3Cgale_proqu%3EA189705178%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c618t-8d950e120129c28366c5f04edf1ec31b641586ab5d5e5cd23a20f4b77fc51f193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=204476723&rft_id=info:pmid/18305540&rft_galeid=A189705178&rfr_iscdi=true |