Loading…
The Cell Cycle Factor E2F-1 Activates Bnip3 and the Intrinsic Death Pathway in Ventricular Myocytes
The cell cycle factor E2F-1 is known to regulate a variety of cellular processes including apoptosis. Previously we showed that disruption of Rb–E2F-1 complexes provoked apoptosis of postmitotic adult and neonatal ventricular myocytes; however, the underlying mechanism was undetermined. In this repo...
Saved in:
Published in: | Circulation research 2008-02, Vol.102 (4), p.472-479 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The cell cycle factor E2F-1 is known to regulate a variety of cellular processes including apoptosis. Previously we showed that disruption of Rb–E2F-1 complexes provoked apoptosis of postmitotic adult and neonatal ventricular myocytes; however, the underlying mechanism was undetermined. In this report, we show that E2F-1 provokes cell death of ventricular myocytes through a mechanism that directly impinges on the intrinsic death pathway. Furthermore, we show mechanistically that the hypoxia-inducible death factor Bnip3 is a direct transcriptional target of E2F-1 that is necessary and sufficient for E2F-1–induced cell death. Expression of E2F-1 resulted in a 4.9-fold increase (P |
---|---|
ISSN: | 0009-7330 1524-4571 |
DOI: | 10.1161/CIRCRESAHA.107.164731 |