Loading…
Long-Range Order in Electronic Transport Through Disordered Metal Films
Ultracold atom magnetic field microscopy enables the probing of current flow patterns in planar structures with unprecedented sensitivity. In polycrystalline metal (gold) films, we observed long-range correlations forming organized patterns oriented at ±45° relative to the mean current flow, even at...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2008-02, Vol.319 (5867), p.1226-1229 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultracold atom magnetic field microscopy enables the probing of current flow patterns in planar structures with unprecedented sensitivity. In polycrystalline metal (gold) films, we observed long-range correlations forming organized patterns oriented at ±45° relative to the mean current flow, even at room temperature and at length scales larger than the diffusion length or the grain size by several orders of magnitude. The preference to form patterns at these angles is a direct consequence of universal scattering properties at defects. The observed amplitude of the current direction fluctuations scales inversely to that expected from the relative thickness variations, the grain size, and the defect concentration, all determined independently by standard methods. Ultracold atom magnetometry thus enables new insight into the interplay between disorder and transport. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1152458 |