Loading…

Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns

Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2007-03, Vol.78 (3), p.034301-034301-10
Main Authors: Cesa, Claudia M., Kirchgeßner, Norbert, Mayer, Dirk, Schwarz, Ulrich S., Hoffmann, Bernd, Merkel, Rudolf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533
cites cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533
container_end_page 034301-10
container_issue 3
container_start_page 034301
container_title Review of scientific instruments
container_volume 78
creator Cesa, Claudia M.
Kirchgeßner, Norbert
Mayer, Dirk
Schwarz, Ulrich S.
Hoffmann, Bernd
Merkel, Rudolf
description Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.
doi_str_mv 10.1063/1.2712870
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70367482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70367482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EglIY-APIExJDij-S2FmQUMWXVMQCc-Q4F2qUxsXnDP33JDQSYuCWW56e7h4hF5wtOMvlDV8IxYVW7IDMONNFonIhD8mMMZkmuUr1CTlF_GTDZJwfkxOuUs4F4zNSvzgb_NbECKGDmqJrnfUdUGgNRr-BQLGvMAYTAWnjA127jzUNgL7to_MdNZ1pd-iQ-oZaaNu-NWEELdBJi2fkqDEtwvm05-T94f5t-ZSsXh-fl3erxEqpY1JltQWjZZrXHIyESgmusqwwWmlbVbJWkIG0jRQ2yw0XRWFlLYXOmNJpkUk5J1d77zb4rx4wlhuH402mA99jqZgca4gBvN6Dw--IAZpyG9zGhF3JWTkmLXk5JR3Yy0naVxuof8mp4QDc7gG0Lpqxyf-2v7XLn9ryG7AtiCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70367482</pqid></control><display><type>article</type><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</creator><creatorcontrib>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</creatorcontrib><description>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.2712870</identifier><identifier>PMID: 17411201</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell Adhesion ; Cell Physiological Phenomena ; Mechanics ; Microscopy - methods ; Silicone Elastomers - chemistry</subject><ispartof>Review of scientific instruments, 2007-03, Vol.78 (3), p.034301-034301-10</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</citedby><cites>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.2712870$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17411201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cesa, Claudia M.</creatorcontrib><creatorcontrib>Kirchgeßner, Norbert</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</description><subject>Cell Adhesion</subject><subject>Cell Physiological Phenomena</subject><subject>Mechanics</subject><subject>Microscopy - methods</subject><subject>Silicone Elastomers - chemistry</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EglIY-APIExJDij-S2FmQUMWXVMQCc-Q4F2qUxsXnDP33JDQSYuCWW56e7h4hF5wtOMvlDV8IxYVW7IDMONNFonIhD8mMMZkmuUr1CTlF_GTDZJwfkxOuUs4F4zNSvzgb_NbECKGDmqJrnfUdUGgNRr-BQLGvMAYTAWnjA127jzUNgL7to_MdNZ1pd-iQ-oZaaNu-NWEELdBJi2fkqDEtwvm05-T94f5t-ZSsXh-fl3erxEqpY1JltQWjZZrXHIyESgmusqwwWmlbVbJWkIG0jRQ2yw0XRWFlLYXOmNJpkUk5J1d77zb4rx4wlhuH402mA99jqZgca4gBvN6Dw--IAZpyG9zGhF3JWTkmLXk5JR3Yy0naVxuof8mp4QDc7gG0Lpqxyf-2v7XLn9ryG7AtiCk</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Cesa, Claudia M.</creator><creator>Kirchgeßner, Norbert</creator><creator>Mayer, Dirk</creator><creator>Schwarz, Ulrich S.</creator><creator>Hoffmann, Bernd</creator><creator>Merkel, Rudolf</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><author>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cell Adhesion</topic><topic>Cell Physiological Phenomena</topic><topic>Mechanics</topic><topic>Microscopy - methods</topic><topic>Silicone Elastomers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cesa, Claudia M.</creatorcontrib><creatorcontrib>Kirchgeßner, Norbert</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cesa, Claudia M.</au><au>Kirchgeßner, Norbert</au><au>Mayer, Dirk</au><au>Schwarz, Ulrich S.</au><au>Hoffmann, Bernd</au><au>Merkel, Rudolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>78</volume><issue>3</issue><spage>034301</spage><epage>034301-10</epage><pages>034301-034301-10</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>17411201</pmid><doi>10.1063/1.2712870</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2007-03, Vol.78 (3), p.034301-034301-10
issn 0034-6748
1089-7623
language eng
recordid cdi_proquest_miscellaneous_70367482
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会)
subjects Cell Adhesion
Cell Physiological Phenomena
Mechanics
Microscopy - methods
Silicone Elastomers - chemistry
title Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micropatterned%20silicone%20elastomer%20substrates%20for%20high%20resolution%20analysis%20of%20cellular%20force%20patterns&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Cesa,%20Claudia%20M.&rft.date=2007-03-01&rft.volume=78&rft.issue=3&rft.spage=034301&rft.epage=034301-10&rft.pages=034301-034301-10&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.2712870&rft_dat=%3Cproquest_cross%3E70367482%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70367482&rft_id=info:pmid/17411201&rfr_iscdi=true