Loading…
Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns
Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a...
Saved in:
Published in: | Review of scientific instruments 2007-03, Vol.78 (3), p.034301-034301-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533 |
container_end_page | 034301-10 |
container_issue | 3 |
container_start_page | 034301 |
container_title | Review of scientific instruments |
container_volume | 78 |
creator | Cesa, Claudia M. Kirchgeßner, Norbert Mayer, Dirk Schwarz, Ulrich S. Hoffmann, Bernd Merkel, Rudolf |
description | Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique. |
doi_str_mv | 10.1063/1.2712870 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70367482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70367482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EglIY-APIExJDij-S2FmQUMWXVMQCc-Q4F2qUxsXnDP33JDQSYuCWW56e7h4hF5wtOMvlDV8IxYVW7IDMONNFonIhD8mMMZkmuUr1CTlF_GTDZJwfkxOuUs4F4zNSvzgb_NbECKGDmqJrnfUdUGgNRr-BQLGvMAYTAWnjA127jzUNgL7to_MdNZ1pd-iQ-oZaaNu-NWEELdBJi2fkqDEtwvm05-T94f5t-ZSsXh-fl3erxEqpY1JltQWjZZrXHIyESgmusqwwWmlbVbJWkIG0jRQ2yw0XRWFlLYXOmNJpkUk5J1d77zb4rx4wlhuH402mA99jqZgca4gBvN6Dw--IAZpyG9zGhF3JWTkmLXk5JR3Yy0naVxuof8mp4QDc7gG0Lpqxyf-2v7XLn9ryG7AtiCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70367482</pqid></control><display><type>article</type><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics(アメリカ物理学協会)</source><creator>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</creator><creatorcontrib>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</creatorcontrib><description>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/1.2712870</identifier><identifier>PMID: 17411201</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cell Adhesion ; Cell Physiological Phenomena ; Mechanics ; Microscopy - methods ; Silicone Elastomers - chemistry</subject><ispartof>Review of scientific instruments, 2007-03, Vol.78 (3), p.034301-034301-10</ispartof><rights>2007 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</citedby><cites>FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/1.2712870$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76383</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17411201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cesa, Claudia M.</creatorcontrib><creatorcontrib>Kirchgeßner, Norbert</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</description><subject>Cell Adhesion</subject><subject>Cell Physiological Phenomena</subject><subject>Mechanics</subject><subject>Microscopy - methods</subject><subject>Silicone Elastomers - chemistry</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EglIY-APIExJDij-S2FmQUMWXVMQCc-Q4F2qUxsXnDP33JDQSYuCWW56e7h4hF5wtOMvlDV8IxYVW7IDMONNFonIhD8mMMZkmuUr1CTlF_GTDZJwfkxOuUs4F4zNSvzgb_NbECKGDmqJrnfUdUGgNRr-BQLGvMAYTAWnjA127jzUNgL7to_MdNZ1pd-iQ-oZaaNu-NWEELdBJi2fkqDEtwvm05-T94f5t-ZSsXh-fl3erxEqpY1JltQWjZZrXHIyESgmusqwwWmlbVbJWkIG0jRQ2yw0XRWFlLYXOmNJpkUk5J1d77zb4rx4wlhuH402mA99jqZgca4gBvN6Dw--IAZpyG9zGhF3JWTkmLXk5JR3Yy0naVxuof8mp4QDc7gG0Lpqxyf-2v7XLn9ryG7AtiCk</recordid><startdate>20070301</startdate><enddate>20070301</enddate><creator>Cesa, Claudia M.</creator><creator>Kirchgeßner, Norbert</creator><creator>Mayer, Dirk</creator><creator>Schwarz, Ulrich S.</creator><creator>Hoffmann, Bernd</creator><creator>Merkel, Rudolf</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20070301</creationdate><title>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</title><author>Cesa, Claudia M. ; Kirchgeßner, Norbert ; Mayer, Dirk ; Schwarz, Ulrich S. ; Hoffmann, Bernd ; Merkel, Rudolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Cell Adhesion</topic><topic>Cell Physiological Phenomena</topic><topic>Mechanics</topic><topic>Microscopy - methods</topic><topic>Silicone Elastomers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cesa, Claudia M.</creatorcontrib><creatorcontrib>Kirchgeßner, Norbert</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Schwarz, Ulrich S.</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cesa, Claudia M.</au><au>Kirchgeßner, Norbert</au><au>Mayer, Dirk</au><au>Schwarz, Ulrich S.</au><au>Hoffmann, Bernd</au><au>Merkel, Rudolf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2007-03-01</date><risdate>2007</risdate><volume>78</volume><issue>3</issue><spage>034301</spage><epage>034301-10</epage><pages>034301-034301-10</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Cellular forces are closely related to many physiological processes, including cell migration, growth, division, and differentiation. Here, we describe newly developed techniques to measure these forces with high spatial resolution. Our approach is based on ultrasoft silicone elastomer films with a regular microstructure molded into the surface. Mechanical forces applied by living cells to such films result in elastomer deformation which can be quantified by video microscopy and digital image processing. From this deformation field forces can be calculated. Here we give detailed accounts of the following issues: (1) the preparation of silicon wafers as molds for the microstructures, (2) the fabrication of microstructured elastomer substrates, (3) the in-depth characterization of the mechanical properties of these elastomers, (4) the image processing algorithms for the extraction of cellular deformation fields, and (5) the generalized first moment tensor as a robust mathematical tool to characterize whole cell activity. We present prototype experiments on living myocytes as well as on cardiac fibroblasts and discuss the characteristics and performance of our force measurement technique.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>17411201</pmid><doi>10.1063/1.2712870</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2007-03, Vol.78 (3), p.034301-034301-10 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_proquest_miscellaneous_70367482 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics(アメリカ物理学協会) |
subjects | Cell Adhesion Cell Physiological Phenomena Mechanics Microscopy - methods Silicone Elastomers - chemistry |
title | Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micropatterned%20silicone%20elastomer%20substrates%20for%20high%20resolution%20analysis%20of%20cellular%20force%20patterns&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Cesa,%20Claudia%20M.&rft.date=2007-03-01&rft.volume=78&rft.issue=3&rft.spage=034301&rft.epage=034301-10&rft.pages=034301-034301-10&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/1.2712870&rft_dat=%3Cproquest_cross%3E70367482%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b5dcea8346d1ea3eb7217559a878cbb3d7e5e3cf32c56a1299c3d328507849533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70367482&rft_id=info:pmid/17411201&rfr_iscdi=true |