Loading…

Bayesian Hierarchical Modeling of Receptor Occupancy in PET Trials

Receptor occupancy (RO) PET is a non-invasive way to determine drug on target. Given the complexity of procedures, long acquisition times, and high cost, ligand displacement imaging trials often have a limited size and produce sparse RO results over the time course of the blocking drug. To take the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biopharmaceutical statistics 2008-01, Vol.18 (2), p.256-272
Main Authors: Vandenhende, F., Renard, D., Nie, Y., Kumar, A., Miller, J., Tauscher, J., Witcher, J., Zhou, Y., Wong, D. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Receptor occupancy (RO) PET is a non-invasive way to determine drug on target. Given the complexity of procedures, long acquisition times, and high cost, ligand displacement imaging trials often have a limited size and produce sparse RO results over the time course of the blocking drug. To take the best advantage of the available data, we propose a Bayesian hierarchical model to analyze RO as a function of the displacing drug. The model has three components: the first estimates RO using brain regional time-radioactivity concentrations, the second shapes the pharmacokinetic profile of the blocking drug, and the last relates PK to RO. Compared to standard 2-steps RO estimation methods, our Bayesian approach quantifies the variability of the individual RO measures. The model has also useful prediction capabilities: to quantify brain RO for dosage regimens of the drug that were not tested in the experiment. This permits the optimal dose selection of neuroscience drugs at a limited cost. We illustrate the method in the prediction of RO after multiple dosing from a single-dose trial.
ISSN:1054-3406
1520-5711
DOI:10.1080/10543400701697158