Loading…
Blood flow dynamics in patient-specific cerebral aneurysm models: The relationship between wall shear stress and aneurysm area index
Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the b...
Saved in:
Published in: | Medical engineering & physics 2008-04, Vol.30 (3), p.329-340 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Hemodynamics plays an important role in the progression and rupture of cerebral aneurysms. The temporal and spatial variations in wall shear stress (WSS) within the aneurysmal sac are hypothesized to be correlated with the growth and rupture of the aneurysm. The current work describes the blood flow dynamics in 34 patient-specific models of saccular aneurysms located in the region of the anterior and posterior circulation of the circle of Willis. The models were obtained from three-dimensional rotational angiography image data and blood flow dynamics was studied under a physiologically representative waveform of inflow. The three-dimensional continuity and momentum equations for unsteady laminar flow were solved with commercial software using non-structured fine grid sizes. The vortex structure, the wall pressure, and the WSS showed large variations, depending on the morphology of the artery, size of the aneurysm, and form. A correlation existed between the mean WSS on the aneurysmal sac for lateral unruptured and ruptured aneurysms with an aneurysm surface index, which is defined as the ratio between the aneurysm area and the artery area at model inlet, respectively. |
---|---|
ISSN: | 1350-4533 1873-4030 |
DOI: | 10.1016/j.medengphy.2007.04.011 |