Loading…

Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2

Abstract Chondrogenic potential of human adipose derived stem cells (hASCs) makes them a possible source of seeding cells for cartilage tissue engineering. In this study, chondrogenic differentiation of hASCs induced by transduction with replication-deficient adenovirus carrying human transforming g...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2007-07, Vol.28 (19), p.2994-3003
Main Authors: Jin, Xiao bing, Sun, Yong sheng, Zhang, Ke, Wang, Jing, Shi, Tai ping, Ju, Xiao dong, Lou, Si quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Chondrogenic potential of human adipose derived stem cells (hASCs) makes them a possible source of seeding cells for cartilage tissue engineering. In this study, chondrogenic differentiation of hASCs induced by transduction with replication-deficient adenovirus carrying human transforming growth factor beta2 (Ad5-hTGF beta2) was demonstrated by RT-PCR, immunohistochemistry staining, biochemical and western blot analysis. To evaluate if the in vitro differentiated hASCs could keep their chondrocytic phenotype and produce neo-cartilage in vivo, predifferentiated hASCs were seeded in different scaffolds and implanted in subcutaneous pockets on the dorsum of nude mice. After 4 and 12 weeks culture in vivo, specimens were harvested and examined by histological and immunohistochemical analysis, cartilage-like tissue formation was only found in alginate gel and PLGA/alginate compound groups, in PLGA group, fibrous tissues and angiogenesis ingrowth were observed. These findings demonstrated that adenovirus-mediated hTGF beta2 gene transfer could induce hASCs into a chondrogenic lineage in vitro, however, this predifferentiation did not guarantee ectopic cartilage formation in vivo unless appropriate three-dimensional scaffolds were used as the cell carry vehicles.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2007.03.002