Loading…

Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans

Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epit...

Full description

Saved in:
Bibliographic Details
Published in:Genes, brain and behavior brain and behavior, 2007-04, Vol.6 (3), p.240-252
Main Authors: Olsen, D. P., Phu, D., Libby, L. J. M., Cormier, J. A., Montez, K. M., Ryder, E. F., Politz, S. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3
cites cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3
container_end_page 252
container_issue 3
container_start_page 240
container_title Genes, brain and behavior
container_volume 6
creator Olsen, D. P.
Phu, D.
Libby, L. J. M.
Cormier, J. A.
Montez, K. M.
Ryder, E. F.
Politz, S. M.
description Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.
doi_str_mv 10.1111/j.1601-183X.2006.00252.x
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_70388589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70388589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMotlZfQXLy1jXJbnaz4MUWrULBi0JvIc1O2pTdpCZbbN_erS31qHOZgfn-GfgQwpQktKv7VUJzQodUpLOEEZInhDDOku0Z6p8W56c5Ez10FeOKEFqkgl6iHs1FUea07KPZeAmNj-CiDzusvWuDr7E3OG6CURqwcq1dgMPxy7Z6ad0CW4fbJWAHjWp9BXiswPmwVPPKtjZiqGGhXLxGF0bVEW6OfYA-np_exy_D6dvkdfw4HWpOUzbMNKXATZEzTUQJhqZcsSw3mnPGKIgs5aQsQZRGqQIqWmk9N4UgXGc5yQqVDtDd4e46-M8NxFY2Nmqoa-XAb6IsSCoEF-WfYOeRsSzjHSgOoA4-xgBGroNtVNhJSuRev1zJvVm5t7yP5fJHv9x20dvjj828geo3ePTdAQ8H4MvWsPv3YTkZjboh_QaSYJQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20022445</pqid></control><display><type>article</type><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><source>Wiley-Blackwell Open Access Collection</source><creator>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</creator><creatorcontrib>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</creatorcontrib><description>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2006.00252.x</identifier><identifier>PMID: 16879619</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Antigens, Surface - genetics ; Antigens, Surface - metabolism ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - immunology ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - immunology ; Caenorhabditis elegans Proteins - metabolism ; Chemoreceptor Cells - physiology ; Chemosensation ; Chemotactic Factors - genetics ; Chemotactic Factors - immunology ; Chemotactic Factors - metabolism ; Chemotaxis - physiology ; Dyneins - genetics ; Dyneins - immunology ; Dyneins - metabolism ; Epitopes - genetics ; Epitopes - immunology ; Epitopes - metabolism ; Gene Expression Regulation, Developmental - immunology ; Gene Expression Regulation, Developmental - physiology ; Ion Channels - genetics ; Ion Channels - metabolism ; Kinesin - genetics ; Kinesin - metabolism ; Larva - growth &amp; development ; Larva - immunology ; Larva - metabolism ; Mutant Proteins - genetics ; Mutant Proteins - immunology ; Mutant Proteins - metabolism ; nematode surface ; neuroendocrine behaviour ; Skin - immunology ; Skin - metabolism ; Smell - physiology</subject><ispartof>Genes, brain and behavior, 2007-04, Vol.6 (3), p.240-252</ispartof><rights>2006 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</citedby><cites>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2006.00252.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2006.00252.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2006.00252.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16879619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olsen, D. P.</creatorcontrib><creatorcontrib>Phu, D.</creatorcontrib><creatorcontrib>Libby, L. J. M.</creatorcontrib><creatorcontrib>Cormier, J. A.</creatorcontrib><creatorcontrib>Montez, K. M.</creatorcontrib><creatorcontrib>Ryder, E. F.</creatorcontrib><creatorcontrib>Politz, S. M.</creatorcontrib><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</description><subject>Animals</subject><subject>Antigens, Surface - genetics</subject><subject>Antigens, Surface - metabolism</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - immunology</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - immunology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Chemosensation</subject><subject>Chemotactic Factors - genetics</subject><subject>Chemotactic Factors - immunology</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis - physiology</subject><subject>Dyneins - genetics</subject><subject>Dyneins - immunology</subject><subject>Dyneins - metabolism</subject><subject>Epitopes - genetics</subject><subject>Epitopes - immunology</subject><subject>Epitopes - metabolism</subject><subject>Gene Expression Regulation, Developmental - immunology</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Larva - growth &amp; development</subject><subject>Larva - immunology</subject><subject>Larva - metabolism</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - immunology</subject><subject>Mutant Proteins - metabolism</subject><subject>nematode surface</subject><subject>neuroendocrine behaviour</subject><subject>Skin - immunology</subject><subject>Skin - metabolism</subject><subject>Smell - physiology</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMotlZfQXLy1jXJbnaz4MUWrULBi0JvIc1O2pTdpCZbbN_erS31qHOZgfn-GfgQwpQktKv7VUJzQodUpLOEEZInhDDOku0Z6p8W56c5Ez10FeOKEFqkgl6iHs1FUea07KPZeAmNj-CiDzusvWuDr7E3OG6CURqwcq1dgMPxy7Z6ad0CW4fbJWAHjWp9BXiswPmwVPPKtjZiqGGhXLxGF0bVEW6OfYA-np_exy_D6dvkdfw4HWpOUzbMNKXATZEzTUQJhqZcsSw3mnPGKIgs5aQsQZRGqQIqWmk9N4UgXGc5yQqVDtDd4e46-M8NxFY2Nmqoa-XAb6IsSCoEF-WfYOeRsSzjHSgOoA4-xgBGroNtVNhJSuRev1zJvVm5t7yP5fJHv9x20dvjj828geo3ePTdAQ8H4MvWsPv3YTkZjboh_QaSYJQn</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Olsen, D. P.</creator><creator>Phu, D.</creator><creator>Libby, L. J. M.</creator><creator>Cormier, J. A.</creator><creator>Montez, K. M.</creator><creator>Ryder, E. F.</creator><creator>Politz, S. M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200704</creationdate><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><author>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antigens, Surface - genetics</topic><topic>Antigens, Surface - metabolism</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - immunology</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - immunology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Chemosensation</topic><topic>Chemotactic Factors - genetics</topic><topic>Chemotactic Factors - immunology</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis - physiology</topic><topic>Dyneins - genetics</topic><topic>Dyneins - immunology</topic><topic>Dyneins - metabolism</topic><topic>Epitopes - genetics</topic><topic>Epitopes - immunology</topic><topic>Epitopes - metabolism</topic><topic>Gene Expression Regulation, Developmental - immunology</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Larva - growth &amp; development</topic><topic>Larva - immunology</topic><topic>Larva - metabolism</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - immunology</topic><topic>Mutant Proteins - metabolism</topic><topic>nematode surface</topic><topic>neuroendocrine behaviour</topic><topic>Skin - immunology</topic><topic>Skin - metabolism</topic><topic>Smell - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olsen, D. P.</creatorcontrib><creatorcontrib>Phu, D.</creatorcontrib><creatorcontrib>Libby, L. J. M.</creatorcontrib><creatorcontrib>Cormier, J. A.</creatorcontrib><creatorcontrib>Montez, K. M.</creatorcontrib><creatorcontrib>Ryder, E. F.</creatorcontrib><creatorcontrib>Politz, S. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olsen, D. P.</au><au>Phu, D.</au><au>Libby, L. J. M.</au><au>Cormier, J. A.</au><au>Montez, K. M.</au><au>Ryder, E. F.</au><au>Politz, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2007-04</date><risdate>2007</risdate><volume>6</volume><issue>3</issue><spage>240</spage><epage>252</epage><pages>240-252</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><abstract>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16879619</pmid><doi>10.1111/j.1601-183X.2006.00252.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1601-1848
ispartof Genes, brain and behavior, 2007-04, Vol.6 (3), p.240-252
issn 1601-1848
1601-183X
language eng
recordid cdi_proquest_miscellaneous_70388589
source Wiley-Blackwell Open Access Collection
subjects Animals
Antigens, Surface - genetics
Antigens, Surface - metabolism
Caenorhabditis elegans - genetics
Caenorhabditis elegans - immunology
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - immunology
Caenorhabditis elegans Proteins - metabolism
Chemoreceptor Cells - physiology
Chemosensation
Chemotactic Factors - genetics
Chemotactic Factors - immunology
Chemotactic Factors - metabolism
Chemotaxis - physiology
Dyneins - genetics
Dyneins - immunology
Dyneins - metabolism
Epitopes - genetics
Epitopes - immunology
Epitopes - metabolism
Gene Expression Regulation, Developmental - immunology
Gene Expression Regulation, Developmental - physiology
Ion Channels - genetics
Ion Channels - metabolism
Kinesin - genetics
Kinesin - metabolism
Larva - growth & development
Larva - immunology
Larva - metabolism
Mutant Proteins - genetics
Mutant Proteins - immunology
Mutant Proteins - metabolism
nematode surface
neuroendocrine behaviour
Skin - immunology
Skin - metabolism
Smell - physiology
title Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemosensory%20control%20of%20surface%20antigen%20switching%20in%20the%20nematode%20Caenorhabditis%20elegans&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Olsen,%20D.%20P.&rft.date=2007-04&rft.volume=6&rft.issue=3&rft.spage=240&rft.epage=252&rft.pages=240-252&rft.issn=1601-1848&rft.eissn=1601-183X&rft_id=info:doi/10.1111/j.1601-183X.2006.00252.x&rft_dat=%3Cproquest_24P%3E70388589%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20022445&rft_id=info:pmid/16879619&rfr_iscdi=true