Loading…
Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans
Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epit...
Saved in:
Published in: | Genes, brain and behavior brain and behavior, 2007-04, Vol.6 (3), p.240-252 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3 |
container_end_page | 252 |
container_issue | 3 |
container_start_page | 240 |
container_title | Genes, brain and behavior |
container_volume | 6 |
creator | Olsen, D. P. Phu, D. Libby, L. J. M. Cormier, J. A. Montez, K. M. Ryder, E. F. Politz, S. M. |
description | Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons. |
doi_str_mv | 10.1111/j.1601-183X.2006.00252.x |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_70388589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70388589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMotlZfQXLy1jXJbnaz4MUWrULBi0JvIc1O2pTdpCZbbN_erS31qHOZgfn-GfgQwpQktKv7VUJzQodUpLOEEZInhDDOku0Z6p8W56c5Ez10FeOKEFqkgl6iHs1FUea07KPZeAmNj-CiDzusvWuDr7E3OG6CURqwcq1dgMPxy7Z6ad0CW4fbJWAHjWp9BXiswPmwVPPKtjZiqGGhXLxGF0bVEW6OfYA-np_exy_D6dvkdfw4HWpOUzbMNKXATZEzTUQJhqZcsSw3mnPGKIgs5aQsQZRGqQIqWmk9N4UgXGc5yQqVDtDd4e46-M8NxFY2Nmqoa-XAb6IsSCoEF-WfYOeRsSzjHSgOoA4-xgBGroNtVNhJSuRev1zJvVm5t7yP5fJHv9x20dvjj828geo3ePTdAQ8H4MvWsPv3YTkZjboh_QaSYJQn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20022445</pqid></control><display><type>article</type><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><source>Wiley-Blackwell Open Access Collection</source><creator>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</creator><creatorcontrib>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</creatorcontrib><description>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</description><identifier>ISSN: 1601-1848</identifier><identifier>EISSN: 1601-183X</identifier><identifier>DOI: 10.1111/j.1601-183X.2006.00252.x</identifier><identifier>PMID: 16879619</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Antigens, Surface - genetics ; Antigens, Surface - metabolism ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - immunology ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - immunology ; Caenorhabditis elegans Proteins - metabolism ; Chemoreceptor Cells - physiology ; Chemosensation ; Chemotactic Factors - genetics ; Chemotactic Factors - immunology ; Chemotactic Factors - metabolism ; Chemotaxis - physiology ; Dyneins - genetics ; Dyneins - immunology ; Dyneins - metabolism ; Epitopes - genetics ; Epitopes - immunology ; Epitopes - metabolism ; Gene Expression Regulation, Developmental - immunology ; Gene Expression Regulation, Developmental - physiology ; Ion Channels - genetics ; Ion Channels - metabolism ; Kinesin - genetics ; Kinesin - metabolism ; Larva - growth & development ; Larva - immunology ; Larva - metabolism ; Mutant Proteins - genetics ; Mutant Proteins - immunology ; Mutant Proteins - metabolism ; nematode surface ; neuroendocrine behaviour ; Skin - immunology ; Skin - metabolism ; Smell - physiology</subject><ispartof>Genes, brain and behavior, 2007-04, Vol.6 (3), p.240-252</ispartof><rights>2006 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</citedby><cites>FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1601-183X.2006.00252.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1601-183X.2006.00252.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1601-183X.2006.00252.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16879619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Olsen, D. P.</creatorcontrib><creatorcontrib>Phu, D.</creatorcontrib><creatorcontrib>Libby, L. J. M.</creatorcontrib><creatorcontrib>Cormier, J. A.</creatorcontrib><creatorcontrib>Montez, K. M.</creatorcontrib><creatorcontrib>Ryder, E. F.</creatorcontrib><creatorcontrib>Politz, S. M.</creatorcontrib><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><title>Genes, brain and behavior</title><addtitle>Genes Brain Behav</addtitle><description>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</description><subject>Animals</subject><subject>Antigens, Surface - genetics</subject><subject>Antigens, Surface - metabolism</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - immunology</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - immunology</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Chemoreceptor Cells - physiology</subject><subject>Chemosensation</subject><subject>Chemotactic Factors - genetics</subject><subject>Chemotactic Factors - immunology</subject><subject>Chemotactic Factors - metabolism</subject><subject>Chemotaxis - physiology</subject><subject>Dyneins - genetics</subject><subject>Dyneins - immunology</subject><subject>Dyneins - metabolism</subject><subject>Epitopes - genetics</subject><subject>Epitopes - immunology</subject><subject>Epitopes - metabolism</subject><subject>Gene Expression Regulation, Developmental - immunology</subject><subject>Gene Expression Regulation, Developmental - physiology</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Kinesin - genetics</subject><subject>Kinesin - metabolism</subject><subject>Larva - growth & development</subject><subject>Larva - immunology</subject><subject>Larva - metabolism</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - immunology</subject><subject>Mutant Proteins - metabolism</subject><subject>nematode surface</subject><subject>neuroendocrine behaviour</subject><subject>Skin - immunology</subject><subject>Skin - metabolism</subject><subject>Smell - physiology</subject><issn>1601-1848</issn><issn>1601-183X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMotlZfQXLy1jXJbnaz4MUWrULBi0JvIc1O2pTdpCZbbN_erS31qHOZgfn-GfgQwpQktKv7VUJzQodUpLOEEZInhDDOku0Z6p8W56c5Ez10FeOKEFqkgl6iHs1FUea07KPZeAmNj-CiDzusvWuDr7E3OG6CURqwcq1dgMPxy7Z6ad0CW4fbJWAHjWp9BXiswPmwVPPKtjZiqGGhXLxGF0bVEW6OfYA-np_exy_D6dvkdfw4HWpOUzbMNKXATZEzTUQJhqZcsSw3mnPGKIgs5aQsQZRGqQIqWmk9N4UgXGc5yQqVDtDd4e46-M8NxFY2Nmqoa-XAb6IsSCoEF-WfYOeRsSzjHSgOoA4-xgBGroNtVNhJSuRev1zJvVm5t7yP5fJHv9x20dvjj828geo3ePTdAQ8H4MvWsPv3YTkZjboh_QaSYJQn</recordid><startdate>200704</startdate><enddate>200704</enddate><creator>Olsen, D. P.</creator><creator>Phu, D.</creator><creator>Libby, L. J. M.</creator><creator>Cormier, J. A.</creator><creator>Montez, K. M.</creator><creator>Ryder, E. F.</creator><creator>Politz, S. M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200704</creationdate><title>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</title><author>Olsen, D. P. ; Phu, D. ; Libby, L. J. M. ; Cormier, J. A. ; Montez, K. M. ; Ryder, E. F. ; Politz, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Antigens, Surface - genetics</topic><topic>Antigens, Surface - metabolism</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - immunology</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - immunology</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Chemoreceptor Cells - physiology</topic><topic>Chemosensation</topic><topic>Chemotactic Factors - genetics</topic><topic>Chemotactic Factors - immunology</topic><topic>Chemotactic Factors - metabolism</topic><topic>Chemotaxis - physiology</topic><topic>Dyneins - genetics</topic><topic>Dyneins - immunology</topic><topic>Dyneins - metabolism</topic><topic>Epitopes - genetics</topic><topic>Epitopes - immunology</topic><topic>Epitopes - metabolism</topic><topic>Gene Expression Regulation, Developmental - immunology</topic><topic>Gene Expression Regulation, Developmental - physiology</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Kinesin - genetics</topic><topic>Kinesin - metabolism</topic><topic>Larva - growth & development</topic><topic>Larva - immunology</topic><topic>Larva - metabolism</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - immunology</topic><topic>Mutant Proteins - metabolism</topic><topic>nematode surface</topic><topic>neuroendocrine behaviour</topic><topic>Skin - immunology</topic><topic>Skin - metabolism</topic><topic>Smell - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olsen, D. P.</creatorcontrib><creatorcontrib>Phu, D.</creatorcontrib><creatorcontrib>Libby, L. J. M.</creatorcontrib><creatorcontrib>Cormier, J. A.</creatorcontrib><creatorcontrib>Montez, K. M.</creatorcontrib><creatorcontrib>Ryder, E. F.</creatorcontrib><creatorcontrib>Politz, S. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genes, brain and behavior</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olsen, D. P.</au><au>Phu, D.</au><au>Libby, L. J. M.</au><au>Cormier, J. A.</au><au>Montez, K. M.</au><au>Ryder, E. F.</au><au>Politz, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans</atitle><jtitle>Genes, brain and behavior</jtitle><addtitle>Genes Brain Behav</addtitle><date>2007-04</date><risdate>2007</risdate><volume>6</volume><issue>3</issue><spage>240</spage><epage>252</epage><pages>240-252</pages><issn>1601-1848</issn><eissn>1601-183X</eissn><abstract>Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free‐living species Caenorhabditis elegans, wild‐type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well‐characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis‐defective che‐3, osm‐3 and tax‐4 mutants. In contrast, chemotaxis‐defective mutants altered in a different gene, srf‐6, show constitutive display of the L1 epitope on all four larval stages. The ILD‐defective che‐3, osm‐3 and tax‐4 mutations blocked the constitutive larval display of an srf‐6 mutant. Combining srf‐6 and certain dauer‐constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf‐6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode‘s chemosensory neurons.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>16879619</pmid><doi>10.1111/j.1601-183X.2006.00252.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1601-1848 |
ispartof | Genes, brain and behavior, 2007-04, Vol.6 (3), p.240-252 |
issn | 1601-1848 1601-183X |
language | eng |
recordid | cdi_proquest_miscellaneous_70388589 |
source | Wiley-Blackwell Open Access Collection |
subjects | Animals Antigens, Surface - genetics Antigens, Surface - metabolism Caenorhabditis elegans - genetics Caenorhabditis elegans - immunology Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - immunology Caenorhabditis elegans Proteins - metabolism Chemoreceptor Cells - physiology Chemosensation Chemotactic Factors - genetics Chemotactic Factors - immunology Chemotactic Factors - metabolism Chemotaxis - physiology Dyneins - genetics Dyneins - immunology Dyneins - metabolism Epitopes - genetics Epitopes - immunology Epitopes - metabolism Gene Expression Regulation, Developmental - immunology Gene Expression Regulation, Developmental - physiology Ion Channels - genetics Ion Channels - metabolism Kinesin - genetics Kinesin - metabolism Larva - growth & development Larva - immunology Larva - metabolism Mutant Proteins - genetics Mutant Proteins - immunology Mutant Proteins - metabolism nematode surface neuroendocrine behaviour Skin - immunology Skin - metabolism Smell - physiology |
title | Chemosensory control of surface antigen switching in the nematode Caenorhabditis elegans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemosensory%20control%20of%20surface%20antigen%20switching%20in%20the%20nematode%20Caenorhabditis%20elegans&rft.jtitle=Genes,%20brain%20and%20behavior&rft.au=Olsen,%20D.%20P.&rft.date=2007-04&rft.volume=6&rft.issue=3&rft.spage=240&rft.epage=252&rft.pages=240-252&rft.issn=1601-1848&rft.eissn=1601-183X&rft_id=info:doi/10.1111/j.1601-183X.2006.00252.x&rft_dat=%3Cproquest_24P%3E70388589%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5132-4c11e5f762c089ef135a246fc55221e8435099e89faa7ed1dccbf7805c46047a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20022445&rft_id=info:pmid/16879619&rfr_iscdi=true |