Loading…

Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes

Alternating current (ac) phase-sensitive detection is used to measure the conductance of the ion channel α-hemolysin (αHL), while simultaneously applying a direct current (dc) bias to electrostatically control the binding affinity and kinetics of charged molecules within the protein lumen. Ion chann...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2008-03, Vol.80 (6), p.2069-2076
Main Authors: Ervin, Eric N, Kawano, Ryuji, White, Ryan J, White, Henry S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963
cites cdi_FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963
container_end_page 2076
container_issue 6
container_start_page 2069
container_title Analytical chemistry (Washington)
container_volume 80
creator Ervin, Eric N
Kawano, Ryuji
White, Ryan J
White, Henry S
description Alternating current (ac) phase-sensitive detection is used to measure the conductance of the ion channel α-hemolysin (αHL), while simultaneously applying a direct current (dc) bias to electrostatically control the binding affinity and kinetics of charged molecules within the protein lumen. Ion channel conductance was recorded while applying a 10−20 mV rms, 1−2 kHz bias across a single αHL protein inserted in a 1,2-diphytanoyl-sn-glycero-3-phosphocholine lipid bilayer that is suspended across the orifice (100−500 nm radius) of a glass nanopore membrane. Step changes in the ac ion channel conductance with a temporal response (t 10 - 90) of 1.5 ms and noise amplitude of ∼2 pA were obtained using a low-noise potentiostat and a lock-in amplifier. These conditions were used to monitor the reversible and stochastic binding of heptakis-(6-O-sulfo)-β-cyclodextrin and a nine base pair DNA hairpin molecule to the ion channel. Alternating current methodology allows the binding kinetics and affinity between the protein ion channel and analyte to be investigated as a function of the dc bias, including ion channel conductance measurements in the absence of a dc bias.
doi_str_mv 10.1021/ac7021103
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70394211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70394211</sourcerecordid><originalsourceid>FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963</originalsourceid><addsrcrecordid>eNpl0VFvFCEQB_CN0diz-uAXMMREEx9WB9gD9rG91tqkrY1t4yOZZVndloMTWGO_vVzucpfo04TwY2D-VNVrCh8pMPoJjSyFAn9SzeicQS2UYk-rGQDwmkmAg-pFSvcAxVDxvDqgirW8bcSserwZl5PL6G2YEjly2UaPefQ_CPqenIzRmkwWU4zWZ_LNYh-mTMJArmPIdvTkPHiy-IneW0eOXTAP66Onv4tO5C6tF2cOUyJX6MMqREsu7bKL5br0sno2oEv21bYeVnefT28XX-qLr2fni6OLGhvZ5FqytmnF0HUCRNeioJz2AyquKKIxvLOysYJhA41EkB3CfOiwbxjr7dANreCH1ftN31UMvyabsl6OyVjnNjNrCSWJkl6Bb_-B92EqabikGZWqZZSrgj5skIkhpWgHvYrjEuOjpqDXn6F3n1Hsm23DqVvafi-36RfwbgswGXRDycWMaecYUKWANcXVGzembP_s9jE-aCG5nOvb6xt9AvyKXyrQ3_d90aT9EP8_8C83Gawn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217892138</pqid></control><display><type>article</type><title>Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ervin, Eric N ; Kawano, Ryuji ; White, Ryan J ; White, Henry S</creator><creatorcontrib>Ervin, Eric N ; Kawano, Ryuji ; White, Ryan J ; White, Henry S</creatorcontrib><description>Alternating current (ac) phase-sensitive detection is used to measure the conductance of the ion channel α-hemolysin (αHL), while simultaneously applying a direct current (dc) bias to electrostatically control the binding affinity and kinetics of charged molecules within the protein lumen. Ion channel conductance was recorded while applying a 10−20 mV rms, 1−2 kHz bias across a single αHL protein inserted in a 1,2-diphytanoyl-sn-glycero-3-phosphocholine lipid bilayer that is suspended across the orifice (100−500 nm radius) of a glass nanopore membrane. Step changes in the ac ion channel conductance with a temporal response (t 10 - 90) of 1.5 ms and noise amplitude of ∼2 pA were obtained using a low-noise potentiostat and a lock-in amplifier. These conditions were used to monitor the reversible and stochastic binding of heptakis-(6-O-sulfo)-β-cyclodextrin and a nine base pair DNA hairpin molecule to the ion channel. Alternating current methodology allows the binding kinetics and affinity between the protein ion channel and analyte to be investigated as a function of the dc bias, including ion channel conductance measurements in the absence of a dc bias.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac7021103</identifier><identifier>PMID: 18293946</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical biochemistry: general aspects, technics, instrumentation ; Analytical chemistry ; Analytical, structural and metabolic biochemistry ; Base Sequence ; Biochemistry ; Biological and medical sciences ; DNA, Single-Stranded ; Fundamental and applied biological sciences. Psychology ; Glass ; Ions ; Kinetics ; Membranes ; Membranes, Artificial ; Nanotechnology ; Proteins ; Proteins - chemistry</subject><ispartof>Analytical chemistry (Washington), 2008-03, Vol.80 (6), p.2069-2076</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963</citedby><cites>FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20188024$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18293946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ervin, Eric N</creatorcontrib><creatorcontrib>Kawano, Ryuji</creatorcontrib><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><title>Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Alternating current (ac) phase-sensitive detection is used to measure the conductance of the ion channel α-hemolysin (αHL), while simultaneously applying a direct current (dc) bias to electrostatically control the binding affinity and kinetics of charged molecules within the protein lumen. Ion channel conductance was recorded while applying a 10−20 mV rms, 1−2 kHz bias across a single αHL protein inserted in a 1,2-diphytanoyl-sn-glycero-3-phosphocholine lipid bilayer that is suspended across the orifice (100−500 nm radius) of a glass nanopore membrane. Step changes in the ac ion channel conductance with a temporal response (t 10 - 90) of 1.5 ms and noise amplitude of ∼2 pA were obtained using a low-noise potentiostat and a lock-in amplifier. These conditions were used to monitor the reversible and stochastic binding of heptakis-(6-O-sulfo)-β-cyclodextrin and a nine base pair DNA hairpin molecule to the ion channel. Alternating current methodology allows the binding kinetics and affinity between the protein ion channel and analyte to be investigated as a function of the dc bias, including ion channel conductance measurements in the absence of a dc bias.</description><subject>Analytical biochemistry: general aspects, technics, instrumentation</subject><subject>Analytical chemistry</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>DNA, Single-Stranded</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glass</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanotechnology</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNpl0VFvFCEQB_CN0diz-uAXMMREEx9WB9gD9rG91tqkrY1t4yOZZVndloMTWGO_vVzucpfo04TwY2D-VNVrCh8pMPoJjSyFAn9SzeicQS2UYk-rGQDwmkmAg-pFSvcAxVDxvDqgirW8bcSserwZl5PL6G2YEjly2UaPefQ_CPqenIzRmkwWU4zWZ_LNYh-mTMJArmPIdvTkPHiy-IneW0eOXTAP66Onv4tO5C6tF2cOUyJX6MMqREsu7bKL5br0sno2oEv21bYeVnefT28XX-qLr2fni6OLGhvZ5FqytmnF0HUCRNeioJz2AyquKKIxvLOysYJhA41EkB3CfOiwbxjr7dANreCH1ftN31UMvyabsl6OyVjnNjNrCSWJkl6Bb_-B92EqabikGZWqZZSrgj5skIkhpWgHvYrjEuOjpqDXn6F3n1Hsm23DqVvafi-36RfwbgswGXRDycWMaecYUKWANcXVGzembP_s9jE-aCG5nOvb6xt9AvyKXyrQ3_d90aT9EP8_8C83Gawn</recordid><startdate>20080315</startdate><enddate>20080315</enddate><creator>Ervin, Eric N</creator><creator>Kawano, Ryuji</creator><creator>White, Ryan J</creator><creator>White, Henry S</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080315</creationdate><title>Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes</title><author>Ervin, Eric N ; Kawano, Ryuji ; White, Ryan J ; White, Henry S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical biochemistry: general aspects, technics, instrumentation</topic><topic>Analytical chemistry</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>DNA, Single-Stranded</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glass</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanotechnology</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ervin, Eric N</creatorcontrib><creatorcontrib>Kawano, Ryuji</creatorcontrib><creatorcontrib>White, Ryan J</creatorcontrib><creatorcontrib>White, Henry S</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ervin, Eric N</au><au>Kawano, Ryuji</au><au>White, Ryan J</au><au>White, Henry S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-03-15</date><risdate>2008</risdate><volume>80</volume><issue>6</issue><spage>2069</spage><epage>2076</epage><pages>2069-2076</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Alternating current (ac) phase-sensitive detection is used to measure the conductance of the ion channel α-hemolysin (αHL), while simultaneously applying a direct current (dc) bias to electrostatically control the binding affinity and kinetics of charged molecules within the protein lumen. Ion channel conductance was recorded while applying a 10−20 mV rms, 1−2 kHz bias across a single αHL protein inserted in a 1,2-diphytanoyl-sn-glycero-3-phosphocholine lipid bilayer that is suspended across the orifice (100−500 nm radius) of a glass nanopore membrane. Step changes in the ac ion channel conductance with a temporal response (t 10 - 90) of 1.5 ms and noise amplitude of ∼2 pA were obtained using a low-noise potentiostat and a lock-in amplifier. These conditions were used to monitor the reversible and stochastic binding of heptakis-(6-O-sulfo)-β-cyclodextrin and a nine base pair DNA hairpin molecule to the ion channel. Alternating current methodology allows the binding kinetics and affinity between the protein ion channel and analyte to be investigated as a function of the dc bias, including ion channel conductance measurements in the absence of a dc bias.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18293946</pmid><doi>10.1021/ac7021103</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-03, Vol.80 (6), p.2069-2076
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70394211
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical biochemistry: general aspects, technics, instrumentation
Analytical chemistry
Analytical, structural and metabolic biochemistry
Base Sequence
Biochemistry
Biological and medical sciences
DNA, Single-Stranded
Fundamental and applied biological sciences. Psychology
Glass
Ions
Kinetics
Membranes
Membranes, Artificial
Nanotechnology
Proteins
Proteins - chemistry
title Simultaneous Alternating and Direct Current Readout of Protein Ion Channel Blocking Events Using Glass Nanopore Membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Alternating%20and%20Direct%20Current%20Readout%20of%20Protein%20Ion%20Channel%20Blocking%20Events%20Using%20Glass%20Nanopore%20Membranes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ervin,%20Eric%20N&rft.date=2008-03-15&rft.volume=80&rft.issue=6&rft.spage=2069&rft.epage=2076&rft.pages=2069-2076&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac7021103&rft_dat=%3Cproquest_cross%3E70394211%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a474t-729496fbb606b9a6131dfa8381aacc3be74e62a4047a07ba05fbad422defbf963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217892138&rft_id=info:pmid/18293946&rfr_iscdi=true