Loading…
A sensitizing regimen of amphetamine that disrupts attentional set-shifting does not disrupt working or long-term memory
Exposure to an intermittent, escalating dose of amphetamine induces a sensitized state that, both behaviourally and neurochemically, mirrors several features linked to the positive symptoms of schizophrenia. Increasingly it is being realized that cognitive deficits are a core component of schizophre...
Saved in:
Published in: | Behavioural brain research 2008-05, Vol.189 (1), p.170-179 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exposure to an intermittent, escalating dose of amphetamine induces a sensitized state that, both behaviourally and neurochemically, mirrors several features linked to the positive symptoms of schizophrenia. Increasingly it is being realized that cognitive deficits are a core component of schizophrenia; therefore we sought to assess the effects of inducing an amphetamine-sensitized state on memory (working and long-term) and cognitive flexibility, two cognitive domains impaired in schizophrenia. Rats were exposed to a sensitizing regimen of amphetamine (1–5
mg/kg; three times per week for 5 weeks; escalating at 1
mg/kg per week) or saline. In experiment 1, animals were tested on an operant delayed non-match to position task (working memory). Experiment 2 used a standard fixed-platform location water maze task (long-term memory), while experiment 3 used a variable-platform location water maze task (long-term memory and working memory). Amphetamine-sensitized animals were not impaired on any of these tasks. In experiment 4, animals were assessed on a strategy selection task in which they were first required to learn to locate a food reward using a particular learning strategy (place or response) then to learn to shift to an alternate learning strategy (response or place). Amphetamine-sensitized animals were not impaired on this task. In the final experiment animals were found to be impaired in performance of the extra-dimensional shift component of an attentional set-shifting task. These results suggest that while amphetamine sensitization does not produce memory impairments similar to those seen in schizophrenia, it does produce strong impairments in set-shifting, suggesting changes in prefrontal function similar to those seen in schizophrenia. |
---|---|
ISSN: | 0166-4328 1872-7549 |
DOI: | 10.1016/j.bbr.2007.12.032 |