Loading…

On Feature Extraction via Kernels

Using the kernel trick idea and the kernels-as-features idea, we can construct two kinds of nonlinear feature spaces, where linear feature extraction algorithms can be employed to extract nonlinear features. In this correspondence, we study the relationship between the two kernel ideas applied to ce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2008-04, Vol.38 (2), p.553-557
Main Authors: Yang, Cheng, Wang, Liwei, Feng, Jufu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using the kernel trick idea and the kernels-as-features idea, we can construct two kinds of nonlinear feature spaces, where linear feature extraction algorithms can be employed to extract nonlinear features. In this correspondence, we study the relationship between the two kernel ideas applied to certain feature extraction algorithms such as linear discriminant analysis, principal component analysis, and canonical correlation analysis. We provide a rigorous theoretical analysis and show that they are equivalent up to different scalings on each feature. These results provide a better understanding of the kernel method.
ISSN:1083-4419
2168-2267
1941-0492
2168-2275
DOI:10.1109/TSMCB.2007.913604