Loading…
Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain
Trypanosoma cruzi invasion is mediated by receptor–ligand recognition between the surfaces of both parasite and target cell. We have previously demonstrated the role of heparan sulfate proteoglycan in the attachment and invasion of T. cruzi in cardiomyocytes. Herein, we have isolated the T. cruzi he...
Saved in:
Published in: | Microbial pathogenesis 2008-04, Vol.44 (4), p.329-338 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Trypanosoma cruzi invasion is mediated by receptor–ligand recognition between the surfaces of both parasite and target cell. We have previously demonstrated the role of heparan sulfate proteoglycan in the attachment and invasion of
T. cruzi in cardiomyocytes. Herein, we have isolated the
T. cruzi heparin-binding proteins (HBP-Tc) and investigated the nature of cardiomyocyte heparan sulfate (HS)-binding site to the parasite surface ligand. Two major heparin-binding proteins with molecular masses of 65.8 and 59
kDa were observed in total extract of amastigote and trypomastigote forms of
T. cruzi. Hydrophobic [S
35]methionine labeled proteins eluted from heparin–sepharose affinity chromatography also revealed both proteins in trypomastigotes but only the 59
kDa is strongly recognized by biotin-conjugated glycosaminoglycans. Competition assays were performed to analyze the role of sulfated proteoglycans, including heparin, keratan sulfate and both acetylated and highly sulfated domains of heparan sulfate, in the recognition and invasion process of
T. cruzi. Significant inhibitions of 84% and 35% in the percentage of infection were revealed after treatment of the parasites with heparin and the N-acetylated/ N-sulfated heparan sulfate domain, respectively, suggesting the important role of the glycuronic acid and NS glucosamine domain of the HS chain in the recognition of the HBP-Tc during the
T. cruzi–cardiomyocyte interaction. |
---|---|
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2007.10.003 |