Loading…

Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory

Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric R3̄c phase at around 27 GPa. The...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2007-05, Vol.111 (17), p.4287-4290
Main Authors: Frantti, J, Fujioka, Y, Nieminen, R. M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4290
container_issue 17
container_start_page 4287
container_title The journal of physical chemistry. B
container_volume 111
creator Frantti, J
Fujioka, Y
Nieminen, R. M
description Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric R3̄c phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and R3̄c phases is that they allow the oxygen octahedron to increase its volume V B at the expense of the cuboctahedral volume V A around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the V A/V B ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.
doi_str_mv 10.1021/jp0713209
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70423603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70423603</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-f78dd5375fc51ec671f9f2cc6748a8e3ce473969368ec8ea640ce149d7ab0e763</originalsourceid><addsrcrecordid>eNo9kc9Kw0AQxhdRbK0efAHZi96is9lkd-OtFP-B0FTjUZbtZkJT26TuJmA9efU1fRIjrT0M88H8GOabj5BTBpcMQnY1X4FkPIRkj_RZHELQldzfasFA9MiR93OAMA6VOCQ9JiNQYZz0yWvq0PvWYfBQ5a3FnKYz45FmzlS-bMq68rSsaDrNyjG__vn6pkM6adGtaVE72syQpvXCuPLT_LH0qW42Ipth7dbH5KAwC48n2z4gL7c32eg-eBzfPYyGj4HhUjVBIVWex1zGhY0ZWiFZkRSh7USkjEJuMZI8EQkXCq1CIyKwyKIkl2YKKAUfkIvN3pWr31v0jV6W3uJiYSqsW68lRCEXwDvwbAu20yXmeuXKpXFr_f-QDgg2QOkb_NjNjXvTQnYX6ix91hDfT1QKEw0df77hjfV6Xreu6nxqBvovGL0Lhv8C-zl8rA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70423603</pqid></control><display><type>article</type><title>Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Frantti, J ; Fujioka, Y ; Nieminen, R. M</creator><creatorcontrib>Frantti, J ; Fujioka, Y ; Nieminen, R. M</creatorcontrib><description>Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric R3̄c phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and R3̄c phases is that they allow the oxygen octahedron to increase its volume V B at the expense of the cuboctahedral volume V A around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the V A/V B ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0713209</identifier><identifier>PMID: 17408259</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2007-05, Vol.111 (17), p.4287-4290</ispartof><rights>Copyright © 2007 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17408259$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frantti, J</creatorcontrib><creatorcontrib>Fujioka, Y</creatorcontrib><creatorcontrib>Nieminen, R. M</creatorcontrib><title>Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric R3̄c phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and R3̄c phases is that they allow the oxygen octahedron to increase its volume V B at the expense of the cuboctahedral volume V A around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the V A/V B ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNo9kc9Kw0AQxhdRbK0efAHZi96is9lkd-OtFP-B0FTjUZbtZkJT26TuJmA9efU1fRIjrT0M88H8GOabj5BTBpcMQnY1X4FkPIRkj_RZHELQldzfasFA9MiR93OAMA6VOCQ9JiNQYZz0yWvq0PvWYfBQ5a3FnKYz45FmzlS-bMq68rSsaDrNyjG__vn6pkM6adGtaVE72syQpvXCuPLT_LH0qW42Ipth7dbH5KAwC48n2z4gL7c32eg-eBzfPYyGj4HhUjVBIVWex1zGhY0ZWiFZkRSh7USkjEJuMZI8EQkXCq1CIyKwyKIkl2YKKAUfkIvN3pWr31v0jV6W3uJiYSqsW68lRCEXwDvwbAu20yXmeuXKpXFr_f-QDgg2QOkb_NjNjXvTQnYX6ix91hDfT1QKEw0df77hjfV6Xreu6nxqBvovGL0Lhv8C-zl8rA</recordid><startdate>20070503</startdate><enddate>20070503</enddate><creator>Frantti, J</creator><creator>Fujioka, Y</creator><creator>Nieminen, R. M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20070503</creationdate><title>Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory</title><author>Frantti, J ; Fujioka, Y ; Nieminen, R. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-f78dd5375fc51ec671f9f2cc6748a8e3ce473969368ec8ea640ce149d7ab0e763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frantti, J</creatorcontrib><creatorcontrib>Fujioka, Y</creatorcontrib><creatorcontrib>Nieminen, R. M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frantti, J</au><au>Fujioka, Y</au><au>Nieminen, R. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2007-05-03</date><risdate>2007</risdate><volume>111</volume><issue>17</issue><spage>4287</spage><epage>4290</epage><pages>4287-4290</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric R3̄c phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and R3̄c phases is that they allow the oxygen octahedron to increase its volume V B at the expense of the cuboctahedral volume V A around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the V A/V B ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17408259</pmid><doi>10.1021/jp0713209</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2007-05, Vol.111 (17), p.4287-4290
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70423603
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Pressure-Induced Phase Transitions in PbTiO3:  A Query for the Polarization Rotation Theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pressure-Induced%20Phase%20Transitions%20in%20PbTiO3:%E2%80%89%20A%20Query%20for%20the%20Polarization%20Rotation%20Theory&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Frantti,%20J&rft.date=2007-05-03&rft.volume=111&rft.issue=17&rft.spage=4287&rft.epage=4290&rft.pages=4287-4290&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0713209&rft_dat=%3Cproquest_pubme%3E70423603%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-f78dd5375fc51ec671f9f2cc6748a8e3ce473969368ec8ea640ce149d7ab0e763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70423603&rft_id=info:pmid/17408259&rfr_iscdi=true