Loading…

Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2

Background Studies suggest that triiodothyronine (T3) and cognate nuclear receptors (hTR) are involved in regulation of prostatic cell growth and differentiation. To probe mechanisms for T3 effects, we studied prostate carcinoma cells, investigating the effect of T3 on expression of the B‐cell trans...

Full description

Saved in:
Bibliographic Details
Published in:The Prostate 2008-05, Vol.68 (6), p.610-619
Main Authors: Tsui, Ke-Hung, Hsieh, Wen-Chi, Lin, Mei-Hsien, Chang, Phei-Lang, Juang, Horng-Heng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283
cites cdi_FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283
container_end_page 619
container_issue 6
container_start_page 610
container_title The Prostate
container_volume 68
creator Tsui, Ke-Hung
Hsieh, Wen-Chi
Lin, Mei-Hsien
Chang, Phei-Lang
Juang, Horng-Heng
description Background Studies suggest that triiodothyronine (T3) and cognate nuclear receptors (hTR) are involved in regulation of prostatic cell growth and differentiation. To probe mechanisms for T3 effects, we studied prostate carcinoma cells, investigating the effect of T3 on expression of the B‐cell translocation gene 2 (BTG2), which regulates the G1/S transition of the cell cycle. Methods Effects of T3 on cell proliferation were determined by 3H‐thymidine incorporation. T3 modulation of BTG2 expression was investigated using immunoblots, Northern blots, and transient gene expression assays. The putative T3 response element was determined by electrophoretic mobility shift assay. Results T3 (0.1–1,000 nM) enhanced threefold the proliferation of prostate carcinoma cells and human androgen‐dependent prostate carcinoma cells (LNCaP), but not PC‐3 cells. T3 also inhibited BTG2 gene expression in LNCaP cells. Reporter assays showed that T3 downregulates by 50% promoter activity of the BTG2 gene in LNCaP cells but not PC‐3 cells or thyroid‐hormone receptor (TRβ1)‐overexpression PC‐3 cells. Deleting the putative thyroid hormone response element (TRE; AGCGATGACCTCAGCG) blocked the inhibitory effect of T3 on BTG2 promoter activity. Electrophoretic mobility shift assays with purified TRβ1 from in vitro translation, or with nuclear extracts from LNCaP cells and PC‐3 cells, demonstrated the presence of T3 receptor binding sites in the TRE region. Conclusions These results suggested that the T3 upregulates proliferation of LNCaP cells by downregulating BTG2 gene expression through the consensus TRE pathway. Prostate 68: 610–619, 2008. © 2008 Wiley‐Liss, Inc.
doi_str_mv 10.1002/pros.20725
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70423984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70423984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283</originalsourceid><addsrcrecordid>eNp9kM1u1DAUhS1ERYfChgdA2cACKe313zhZ0gFKparlZ4CldeM4HUMSFztRmQfgvXGaUHasLF1_55x7DyHPKBxTAHZyE3w8ZqCYfEBWFEqVAwj5kKyAKcgF5eqQPI7xO0DCgT0ih7Sg5VpKWJHf2-Ccr_2w2wffu95mna_HFgcbM2PbNkvmrWtswMH5PvNNths77KdxHNLMZAaDcb3v8I6PWbXPan_bB3s92SyiYWez03wzGQ4B-9h6M_9d2xTJnpCDBttony7vEfny7u128z6_uDo737y-yA0vpcwRpZRrVgksORfIK2EUNCBUzUXBKyooNqqRFZSiMFRxACWFMrxSCs2aFfyIvJx90_o_RxsH3bk4rY299WPUCgTjZSES-GoGTbozBtvom-A6DHtNQU-l66kAfVd6gp8vrmPV2fofurScgBcLgNFg26QGjIv3HAMmBZUscXTmbl1r9_-J1B8-XX3-G57PGhcH--teg-GHXiuupP52eaYllV_Lrfyo3_A_o3WqbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70423984</pqid></control><display><type>article</type><title>Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2</title><source>Wiley</source><creator>Tsui, Ke-Hung ; Hsieh, Wen-Chi ; Lin, Mei-Hsien ; Chang, Phei-Lang ; Juang, Horng-Heng</creator><creatorcontrib>Tsui, Ke-Hung ; Hsieh, Wen-Chi ; Lin, Mei-Hsien ; Chang, Phei-Lang ; Juang, Horng-Heng</creatorcontrib><description>Background Studies suggest that triiodothyronine (T3) and cognate nuclear receptors (hTR) are involved in regulation of prostatic cell growth and differentiation. To probe mechanisms for T3 effects, we studied prostate carcinoma cells, investigating the effect of T3 on expression of the B‐cell translocation gene 2 (BTG2), which regulates the G1/S transition of the cell cycle. Methods Effects of T3 on cell proliferation were determined by 3H‐thymidine incorporation. T3 modulation of BTG2 expression was investigated using immunoblots, Northern blots, and transient gene expression assays. The putative T3 response element was determined by electrophoretic mobility shift assay. Results T3 (0.1–1,000 nM) enhanced threefold the proliferation of prostate carcinoma cells and human androgen‐dependent prostate carcinoma cells (LNCaP), but not PC‐3 cells. T3 also inhibited BTG2 gene expression in LNCaP cells. Reporter assays showed that T3 downregulates by 50% promoter activity of the BTG2 gene in LNCaP cells but not PC‐3 cells or thyroid‐hormone receptor (TRβ1)‐overexpression PC‐3 cells. Deleting the putative thyroid hormone response element (TRE; AGCGATGACCTCAGCG) blocked the inhibitory effect of T3 on BTG2 promoter activity. Electrophoretic mobility shift assays with purified TRβ1 from in vitro translation, or with nuclear extracts from LNCaP cells and PC‐3 cells, demonstrated the presence of T3 receptor binding sites in the TRE region. Conclusions These results suggested that the T3 upregulates proliferation of LNCaP cells by downregulating BTG2 gene expression through the consensus TRE pathway. Prostate 68: 610–619, 2008. © 2008 Wiley‐Liss, Inc.</description><identifier>ISSN: 0270-4137</identifier><identifier>EISSN: 1097-0045</identifier><identifier>DOI: 10.1002/pros.20725</identifier><identifier>PMID: 18196550</identifier><identifier>CODEN: PRSTDS</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - metabolism ; Base Sequence ; Biological and medical sciences ; BTG2 ; Cell Cycle Proteins - drug effects ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Dose-Response Relationship, Drug ; Down-Regulation - drug effects ; Gene Expression ; Genes, Tumor Suppressor ; Gynecology. Andrology. Obstetrics ; Humans ; Immediate-Early Proteins - genetics ; Immediate-Early Proteins - metabolism ; LNCaP ; Male ; Medical sciences ; Molecular Sequence Data ; Nephrology. Urinary tract diseases ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; PC-3 ; proliferation ; Prostatic Neoplasms - drug therapy ; Prostatic Neoplasms - metabolism ; Receptors, Thyroid Hormone - drug effects ; Receptors, Thyroid Hormone - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; TRE ; triiodothyronine ; Triiodothyronine - pharmacology ; Tumor Suppressor Proteins ; Tumors of the urinary system ; Urinary tract. Prostate gland</subject><ispartof>The Prostate, 2008-05, Vol.68 (6), p.610-619</ispartof><rights>Copyright © 2008 Wiley‐Liss, Inc.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283</citedby><cites>FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20254152$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18196550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsui, Ke-Hung</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><creatorcontrib>Lin, Mei-Hsien</creatorcontrib><creatorcontrib>Chang, Phei-Lang</creatorcontrib><creatorcontrib>Juang, Horng-Heng</creatorcontrib><title>Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2</title><title>The Prostate</title><addtitle>Prostate</addtitle><description>Background Studies suggest that triiodothyronine (T3) and cognate nuclear receptors (hTR) are involved in regulation of prostatic cell growth and differentiation. To probe mechanisms for T3 effects, we studied prostate carcinoma cells, investigating the effect of T3 on expression of the B‐cell translocation gene 2 (BTG2), which regulates the G1/S transition of the cell cycle. Methods Effects of T3 on cell proliferation were determined by 3H‐thymidine incorporation. T3 modulation of BTG2 expression was investigated using immunoblots, Northern blots, and transient gene expression assays. The putative T3 response element was determined by electrophoretic mobility shift assay. Results T3 (0.1–1,000 nM) enhanced threefold the proliferation of prostate carcinoma cells and human androgen‐dependent prostate carcinoma cells (LNCaP), but not PC‐3 cells. T3 also inhibited BTG2 gene expression in LNCaP cells. Reporter assays showed that T3 downregulates by 50% promoter activity of the BTG2 gene in LNCaP cells but not PC‐3 cells or thyroid‐hormone receptor (TRβ1)‐overexpression PC‐3 cells. Deleting the putative thyroid hormone response element (TRE; AGCGATGACCTCAGCG) blocked the inhibitory effect of T3 on BTG2 promoter activity. Electrophoretic mobility shift assays with purified TRβ1 from in vitro translation, or with nuclear extracts from LNCaP cells and PC‐3 cells, demonstrated the presence of T3 receptor binding sites in the TRE region. Conclusions These results suggested that the T3 upregulates proliferation of LNCaP cells by downregulating BTG2 gene expression through the consensus TRE pathway. Prostate 68: 610–619, 2008. © 2008 Wiley‐Liss, Inc.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - metabolism</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>BTG2</subject><subject>Cell Cycle Proteins - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Down-Regulation - drug effects</subject><subject>Gene Expression</subject><subject>Genes, Tumor Suppressor</subject><subject>Gynecology. Andrology. Obstetrics</subject><subject>Humans</subject><subject>Immediate-Early Proteins - genetics</subject><subject>Immediate-Early Proteins - metabolism</subject><subject>LNCaP</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Molecular Sequence Data</subject><subject>Nephrology. Urinary tract diseases</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>PC-3</subject><subject>proliferation</subject><subject>Prostatic Neoplasms - drug therapy</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Receptors, Thyroid Hormone - drug effects</subject><subject>Receptors, Thyroid Hormone - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>TRE</subject><subject>triiodothyronine</subject><subject>Triiodothyronine - pharmacology</subject><subject>Tumor Suppressor Proteins</subject><subject>Tumors of the urinary system</subject><subject>Urinary tract. Prostate gland</subject><issn>0270-4137</issn><issn>1097-0045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kM1u1DAUhS1ERYfChgdA2cACKe313zhZ0gFKparlZ4CldeM4HUMSFztRmQfgvXGaUHasLF1_55x7DyHPKBxTAHZyE3w8ZqCYfEBWFEqVAwj5kKyAKcgF5eqQPI7xO0DCgT0ih7Sg5VpKWJHf2-Ccr_2w2wffu95mna_HFgcbM2PbNkvmrWtswMH5PvNNths77KdxHNLMZAaDcb3v8I6PWbXPan_bB3s92SyiYWez03wzGQ4B-9h6M_9d2xTJnpCDBttony7vEfny7u128z6_uDo737y-yA0vpcwRpZRrVgksORfIK2EUNCBUzUXBKyooNqqRFZSiMFRxACWFMrxSCs2aFfyIvJx90_o_RxsH3bk4rY299WPUCgTjZSES-GoGTbozBtvom-A6DHtNQU-l66kAfVd6gp8vrmPV2fofurScgBcLgNFg26QGjIv3HAMmBZUscXTmbl1r9_-J1B8-XX3-G57PGhcH--teg-GHXiuupP52eaYllV_Lrfyo3_A_o3WqbQ</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Tsui, Ke-Hung</creator><creator>Hsieh, Wen-Chi</creator><creator>Lin, Mei-Hsien</creator><creator>Chang, Phei-Lang</creator><creator>Juang, Horng-Heng</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080501</creationdate><title>Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2</title><author>Tsui, Ke-Hung ; Hsieh, Wen-Chi ; Lin, Mei-Hsien ; Chang, Phei-Lang ; Juang, Horng-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - metabolism</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>BTG2</topic><topic>Cell Cycle Proteins - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Down-Regulation - drug effects</topic><topic>Gene Expression</topic><topic>Genes, Tumor Suppressor</topic><topic>Gynecology. Andrology. Obstetrics</topic><topic>Humans</topic><topic>Immediate-Early Proteins - genetics</topic><topic>Immediate-Early Proteins - metabolism</topic><topic>LNCaP</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Molecular Sequence Data</topic><topic>Nephrology. Urinary tract diseases</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>PC-3</topic><topic>proliferation</topic><topic>Prostatic Neoplasms - drug therapy</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Receptors, Thyroid Hormone - drug effects</topic><topic>Receptors, Thyroid Hormone - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>TRE</topic><topic>triiodothyronine</topic><topic>Triiodothyronine - pharmacology</topic><topic>Tumor Suppressor Proteins</topic><topic>Tumors of the urinary system</topic><topic>Urinary tract. Prostate gland</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsui, Ke-Hung</creatorcontrib><creatorcontrib>Hsieh, Wen-Chi</creatorcontrib><creatorcontrib>Lin, Mei-Hsien</creatorcontrib><creatorcontrib>Chang, Phei-Lang</creatorcontrib><creatorcontrib>Juang, Horng-Heng</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Prostate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsui, Ke-Hung</au><au>Hsieh, Wen-Chi</au><au>Lin, Mei-Hsien</au><au>Chang, Phei-Lang</au><au>Juang, Horng-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2</atitle><jtitle>The Prostate</jtitle><addtitle>Prostate</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>68</volume><issue>6</issue><spage>610</spage><epage>619</epage><pages>610-619</pages><issn>0270-4137</issn><eissn>1097-0045</eissn><coden>PRSTDS</coden><abstract>Background Studies suggest that triiodothyronine (T3) and cognate nuclear receptors (hTR) are involved in regulation of prostatic cell growth and differentiation. To probe mechanisms for T3 effects, we studied prostate carcinoma cells, investigating the effect of T3 on expression of the B‐cell translocation gene 2 (BTG2), which regulates the G1/S transition of the cell cycle. Methods Effects of T3 on cell proliferation were determined by 3H‐thymidine incorporation. T3 modulation of BTG2 expression was investigated using immunoblots, Northern blots, and transient gene expression assays. The putative T3 response element was determined by electrophoretic mobility shift assay. Results T3 (0.1–1,000 nM) enhanced threefold the proliferation of prostate carcinoma cells and human androgen‐dependent prostate carcinoma cells (LNCaP), but not PC‐3 cells. T3 also inhibited BTG2 gene expression in LNCaP cells. Reporter assays showed that T3 downregulates by 50% promoter activity of the BTG2 gene in LNCaP cells but not PC‐3 cells or thyroid‐hormone receptor (TRβ1)‐overexpression PC‐3 cells. Deleting the putative thyroid hormone response element (TRE; AGCGATGACCTCAGCG) blocked the inhibitory effect of T3 on BTG2 promoter activity. Electrophoretic mobility shift assays with purified TRβ1 from in vitro translation, or with nuclear extracts from LNCaP cells and PC‐3 cells, demonstrated the presence of T3 receptor binding sites in the TRE region. Conclusions These results suggested that the T3 upregulates proliferation of LNCaP cells by downregulating BTG2 gene expression through the consensus TRE pathway. Prostate 68: 610–619, 2008. © 2008 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18196550</pmid><doi>10.1002/pros.20725</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0270-4137
ispartof The Prostate, 2008-05, Vol.68 (6), p.610-619
issn 0270-4137
1097-0045
language eng
recordid cdi_proquest_miscellaneous_70423984
source Wiley
subjects Adenocarcinoma - drug therapy
Adenocarcinoma - metabolism
Base Sequence
Biological and medical sciences
BTG2
Cell Cycle Proteins - drug effects
Cell Line, Tumor
Cell Proliferation - drug effects
Dose-Response Relationship, Drug
Down-Regulation - drug effects
Gene Expression
Genes, Tumor Suppressor
Gynecology. Andrology. Obstetrics
Humans
Immediate-Early Proteins - genetics
Immediate-Early Proteins - metabolism
LNCaP
Male
Medical sciences
Molecular Sequence Data
Nephrology. Urinary tract diseases
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
PC-3
proliferation
Prostatic Neoplasms - drug therapy
Prostatic Neoplasms - metabolism
Receptors, Thyroid Hormone - drug effects
Receptors, Thyroid Hormone - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
TRE
triiodothyronine
Triiodothyronine - pharmacology
Tumor Suppressor Proteins
Tumors of the urinary system
Urinary tract. Prostate gland
title Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-Cell translocation gene 2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triiodothyronine%20modulates%20cell%20proliferation%20of%20human%20prostatic%20carcinoma%20cells%20by%20downregulation%20of%20the%20B-Cell%20translocation%20gene%202&rft.jtitle=The%20Prostate&rft.au=Tsui,%20Ke-Hung&rft.date=2008-05-01&rft.volume=68&rft.issue=6&rft.spage=610&rft.epage=619&rft.pages=610-619&rft.issn=0270-4137&rft.eissn=1097-0045&rft.coden=PRSTDS&rft_id=info:doi/10.1002/pros.20725&rft_dat=%3Cproquest_cross%3E70423984%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3955-aa55562b4a9334a3b4c70f047d3483b141af7f5b0948c173007547c3b77ac6283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70423984&rft_id=info:pmid/18196550&rfr_iscdi=true