Loading…

The Salt Dependence of the Interferon Regulatory Factor 1 DNA Binding Domain Binding to DNA Reveals Ions Are Localized around Protein and DNA

The equilibrium dissociation constant of the DNA binding domain of interferon regulatory factor 1 (IRF1 DBD) for its DNA binding site depends strongly on salt concentration and salt type. These dependencies are consistent with IRF1 DBD binding to DNA, resulting in the release of cations from the DNA...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2008-04, Vol.47 (13), p.4119-4128
Main Authors: Hargreaves, Victoria V, Schleif, Robert F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The equilibrium dissociation constant of the DNA binding domain of interferon regulatory factor 1 (IRF1 DBD) for its DNA binding site depends strongly on salt concentration and salt type. These dependencies are consistent with IRF1 DBD binding to DNA, resulting in the release of cations from the DNA and both release of anions from the protein and uptake of a cation by the protein. We demonstrated this by utilizing the fact that the release of fluoride from protein upon complex formation does not contribute to the salt concentration dependence of binding and by studying mutants in which charged residues in IRF1 DBD that form salt bridges with DNA phosphates are changed to alanine. The salt concentration dependencies of the dissociation constants of wild-type IRF1 DBD and the mutants R64A, D73A, K75A, and D73A/K75A were measured in buffer containing NaF, NaCl, or NaBr. The salt concentration and type dependencies of the mutants relative to wild-type IRF1 DBD provide evidence of charge neutralization by solution ions for R64 and by a salt bridge between D73 and K75 in buffer containing chloride or bromide salts. These data also allowed us to determine the number, type, and localization of condensed ions around both IRF1 DBD and its DNA binding site.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi702082q