Loading…

Potent Nonpeptide Antagonists of the Bradykinin B1 Receptor:  Structure−Activity Relationship Studies with Novel Diaminochroman Carboxamides

The bradykinin B1 receptor is induced following tissue injury and/or inflammation. Antagonists of this receptor have been studied as promising candidates for treatment of chronic pain. We have identified aryl sulfonamides containing a chiral chroman diamine moiety that are potent antagonists of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 2007-05, Vol.50 (9), p.2200-2212
Main Authors: Biswas, Kaustav, Li, Aiwen, Chen, Jian Jeffrey, D'Amico, Derin C, Fotsch, Christopher, Han, Nianhe, Human, Jason, Liu, Qingyian, Norman, Mark H, Riahi, Bobby, Yuan, Chester, Suzuki, Hideo, Mareska, David A, Zhan, James, Clarke, David E, Toro, Andras, Groneberg, Robert D, Burgess, Laurence E, Lester-Zeiner, Dianna, Biddlecome, Gloria, Manning, Barton H, Arik, Leyla, Dong, Hong, Huang, Ming, Kamassah, Augustus, Loeloff, Richard, Sun, Hong, Hsieh, Feng-Yin, Kumar, Gondi, Ng, Gordon Y, Hungate, Randall W, Askew, Benny C, Johnson, Eileen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The bradykinin B1 receptor is induced following tissue injury and/or inflammation. Antagonists of this receptor have been studied as promising candidates for treatment of chronic pain. We have identified aryl sulfonamides containing a chiral chroman diamine moiety that are potent antagonists of the human B1 receptor. Our previously communicated lead, compound 2, served as a proof-of-concept molecule, but suffered from poor pharmacokinetic properties. With guidance from metabolic profiling, we performed structure−activity relationship studies and have identified potent analogs of 2. Variation of the sulfonamide moiety revealed a preference for 3- and 3,4-disubstituted aryl sulfonamides, while bulky secondary and tertiary amines were preferred at the benzylic amine position for potency at the B1 receptor. Modifying the β-amino acid core of the molecule lead to the discovery of highly potent compounds with improved in vitro pharmacokinetic properties. The most potent analog at the human receptor, compound 38, was also active in a rabbit B1 receptor cellular assay. Furthermore, compound 38 displayed in vivo activity in two rabbit models, a pharmacodynamic model with a blood pressure readout and an efficacy model of inflammatory pain.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm070055c