Loading…
New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands
We review recent theoretical studies of the photodissociation of ozone in the wavelength region from 200 nm to 1100 nm comprising four major absorption bands: Hartley and Huggins (near ultraviolet), Chappuis (visible), and Wulf (near infrared). The quantum mechanical dynamics calculations use global...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2007-01, Vol.9 (17), p.2044-2064 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We review recent theoretical studies of the photodissociation of ozone in the wavelength region from 200 nm to 1100 nm comprising four major absorption bands: Hartley and Huggins (near ultraviolet), Chappuis (visible), and Wulf (near infrared). The quantum mechanical dynamics calculations use global potential energy surfaces obtained from new high-level electronic structure calculations. Altogether nine electronic states are taken into account in the theoretical descriptions: four 1A', two 1A'', one 3A' and two 3A'' states. Of particular interest is the analysis of diffuse vibrational structures, which are prominent in all absorption bands, and their dynamical origin and assignment. Another focus is the effect of non-adiabatic coupling on lifetimes in the excited states and on the population of the specific electronic product channels. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/b701020f |