Loading…

Photonic superdiffusive motion in resonance line radiation trapping Partial frequency redistribution effects

The relation between the jump length probability distribution function and the spectral line profile in resonance atomic radiation trapping is considered for partial frequency redistribution (PFR) between absorbed and reemitted radiation. The single line opacity distribution function [M. N. Berberan...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2007-04, Vol.126 (15), p.154505-154505
Main Authors: Alves-Pereira, A R, Nunes-Pereira, E J, Martinho, J M G, Berberan-Santos, M N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relation between the jump length probability distribution function and the spectral line profile in resonance atomic radiation trapping is considered for partial frequency redistribution (PFR) between absorbed and reemitted radiation. The single line opacity distribution function [M. N. Berberan-Santos et al., J. Chem. Phys. 125, 174308 (2006)] is generalized for PFR and used to discuss several possible redistribution mechanisms (pure Doppler broadening; combined natural and Doppler broadening; and combined Doppler, natural, and collisional broadening). It is shown that there are two coexisting scales with a different behavior: the small scale is controlled by the intricate PFR details while the large scale is essentially given by the atom rest frame redistribution asymptotic. The pure Doppler and combined natural, Doppler, and collisional broadening are characterized by both small- and large-scale superdiffusive Levy flight behaviors while the combined natural and Doppler case has an anomalous small-scale behavior but a diffusive large-scale asymptotic. The common practice of assuming complete redistribution in core radiation and frequency coherence in the wings of the spectral distribution is incompatible with the breakdown of superdiffusion in combined natural and Doppler broadening conditions.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2717190