Loading…

Photoperiodic Induction of Diapause Requires Regulated Transcription of timeless in the Larval Brain of Chymomyza costata

Photoperiodic signal stimulates induction of larval diapause in Chymomyza costata. Larvae of NPD strain (npd-mutants) do not respond to photoperiod. Our previous results indicated that the locus npd could code for the timeless gene and its product might represent a molecular link between circadian a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biological rhythms 2008-04, Vol.23 (2), p.129-139
Main Authors: Stehlík, J, Závodská, R, Shimada, K, Šauman, I, Koštál, V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photoperiodic signal stimulates induction of larval diapause in Chymomyza costata. Larvae of NPD strain (npd-mutants) do not respond to photoperiod. Our previous results indicated that the locus npd could code for the timeless gene and its product might represent a molecular link between circadian and photoperiodic clock systems. Here we present results of tim mRNA (real time-PCR) and TIM protein (immunohistochemistry) analyses in the larval brain. TIM protein was localized in 2 neurons of each brain hemisphere of the 4-d-old 3rd instar wild-type larvae. In a marked contrast, no TIM neurons were detected in the brain of 4-day-old 3rd instar npd -mutant larvae and the level of tim transcripts was approximately 10-fold lower in the NPD than in the wild-type strain. Daily changes in tim expression and TIM presence appeared to be under photoperiodic control in the wild-type larvae. Clear daily oscillations of tim transcription were observed during the development of 3rd instars under the short-day conditions. Daily oscillations were less apparent under the long-day conditions, where a gradual increase of tim transcript abundance appeared as a prevailing trend. Analysis of the genomic structure of tim gene revealed that npd-mutants carry a 1855 bp-long deletion in the 5'-UTR region. This deletion removed the start of transcription and promoter regulatory motifs E-box and TER-box. The authors hypothesize that this mutation was responsible for dramatic reduction of tim transcription rates, disruption of circadian clock function, and disruption of photoperiodic calendar function in npd-mutant larvae of C. costata.
ISSN:0748-7304
1552-4531
DOI:10.1177/0748730407313364