Loading…
Up-regulation of Connexin43 in the glial scar following photothrombotic ischemic injury
Several types of CNS injury and various diseases are associated with the development of a glial scar. Astrocytes are major components of the glial scar. They are interconnected by gap junctions, with connexin43 (Cx43) being the most prominent channel protein. We applied a model of focal cerebral isc...
Saved in:
Published in: | Molecular and cellular neuroscience 2007-05, Vol.35 (1), p.89-99 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Several types of CNS injury and various diseases are associated with the development of a glial scar. Astrocytes are major components of the glial scar. They are interconnected by gap junctions, with connexin43 (Cx43) being the most prominent channel protein. We applied a model of focal cerebral ischemia to study the spatio-temporal expression of glial fibrillary acidic protein, as well as of Cx43 mRNA and protein in gliotic tissue up to 60Â days after injury. Reactive astrocytes enveloping the lesion up-regulated their Cx43 mRNA and protein. A band of reactive astrocytes filling in the lesion exhibited elevated Cx43 and showed a high degree of proliferation. Because of these findings, we hypothesize a role for Cx43 in glial scar formation, specifically in the proliferation of astrocytes. |
---|---|
ISSN: | 1044-7431 1095-9327 |
DOI: | 10.1016/j.mcn.2007.02.005 |