Loading…

Polarization Relaxation in an Ionic Liquid Confined between Electrified Walls

The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid−liquid interfaces. Attention is focuse...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2007-05, Vol.111 (18), p.4877-4884
Main Authors: Pinilla, Carlos, Del Pópolo, M. G, Kohanoff, Jorge, Lynden-Bell, R. M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The response of a room temperature molten salt to an external electric field when it is confined to a nanoslit is studied by molecular dynamics simulations. The fluid is confined between two parallel and oppositely charged walls, emulating two electrified solid−liquid interfaces. Attention is focused on structural, electrostatic, and dynamical properties, which are compared with those of the nonpolarized fluid. It is found that the relaxation of the electrostatic potential, after switching the electric field off, occurs in two stages. A first, subpicosecond process accounts for 80% of the decay and is followed by a second subdiffusive process with a time constant of 8 ps. Diffusion is not involved in the relaxation, which is mostly driven by small anion translations. The relaxation of the polarization in the confined system is discussed in terms of the spectrum of charge density fluctuations in the bulk.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp067184+