Loading…

Fabrication of “Tadpole”-like Magnetite/Multiwalled Carbon Nanotube Heterojunctions and Their Self-Assembly under External Magnetic Field

Novel “tadpole”-like Fe3O4/multiwalled carbon nanotube (MWCNT) heterojunctions were successfully synthesized by position-selectively attaching Fe3O4 sphere on the tips of MWCNTs through a straightforward and effective polyol-medium solvothermal method. Transmission and scanning electron microscopy (...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2007-05, Vol.111 (19), p.5337-5343
Main Authors: Jia, Baoping, Gao, Lian
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel “tadpole”-like Fe3O4/multiwalled carbon nanotube (MWCNT) heterojunctions were successfully synthesized by position-selectively attaching Fe3O4 sphere on the tips of MWCNTs through a straightforward and effective polyol-medium solvothermal method. Transmission and scanning electron microscopy (TEM and SEM) and X-ray diffraction (XRD) investigations show these Fe3O4 spheres are constructed with tiny nanocrystallites (∼5 nm in average diameter), which were preferentially aggregated in an oriented pattern on the open ends of the MWCNT template. Magnetic investigation indicates this novel Fe3O4/MWCNT hybrid presents superparamagnetic behavior. The size and corresponding magnetic performance of these magnetite/MWCNT hybrids can be adjustable to some extent for specific applications through altering the reaction parameters. Furthermore, these tadpolelike nanocomposites can orient and self-assemble into one-dimensional structure under external magnetic field, displaying great potential in precise manipulation and organization of carbon nanotube-based structures into integrated functional system.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp070675p