Loading…

Decoupling through Synchrony in Neuronal Circuits with Propagation Delays

The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that wh...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2008-04, Vol.58 (1), p.118-131
Main Authors: Lubenov, Evgueniy V., Siapas, Athanassios G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3
cites cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3
container_end_page 131
container_issue 1
container_start_page 118
container_title Neuron (Cambridge, Mass.)
container_volume 58
creator Lubenov, Evgueniy V.
Siapas, Athanassios G.
description The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.
doi_str_mv 10.1016/j.neuron.2008.01.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70482831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627308001281</els_id><sourcerecordid>3234811521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</originalsourceid><addsrcrecordid>eNp9kFFr2zAQx8VoWdNs32AMQ6FvcXWWYkkvhZG2W6G0hW3PQpbPiYIjZZLdkm9fZQkU9jAE0gl-_zvuR8gXoCVQqK_WpccxBl9WlMqSQklZ_YFMgCox46DUCZlQqepZXQl2Rs5TWlMKfK7gIzkDyfOnlhNyf4M2jNve-WUxrGIYl6vi587bXPpd4Xzx-HeI6YuFi3Z0Qype3bAqnmPYmqUZXPDFDfZmlz6R0870CT8f3yn5fXf7a_Fj9vD0_X7x7WFmOeNDvjEf6KgRpmaqsjU1nYDOgpzbFqs5E7JpmgobVivoKqskazgXreJCNcKyKbk89N3G8GfENOiNSxb73ngMY9KCcllJBhm8-AdchzHmVZKGeZYl9gYyxQ-UjSGliJ3eRrcxcaeB6r1ovdYH0XovWlPQOZtjX4_Nx2aD7XvoaDYD1wcAs4sXh1En69BbbF1EO-g2uP9PeAOh9JDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503670168</pqid></control><display><type>article</type><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</creator><creatorcontrib>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</creatorcontrib><description>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2008.01.036</identifier><identifier>PMID: 18400168</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Experiments ; Hippocampus - physiology ; Models, Neurological ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Population ; Rats ; Sleep ; Studies ; SYSNEURO</subject><ispartof>Neuron (Cambridge, Mass.), 2008-04, Vol.58 (1), p.118-131</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 10, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</citedby><cites>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18400168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubenov, Evgueniy V.</creatorcontrib><creatorcontrib>Siapas, Athanassios G.</creatorcontrib><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Experiments</subject><subject>Hippocampus - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Population</subject><subject>Rats</subject><subject>Sleep</subject><subject>Studies</subject><subject>SYSNEURO</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kFFr2zAQx8VoWdNs32AMQ6FvcXWWYkkvhZG2W6G0hW3PQpbPiYIjZZLdkm9fZQkU9jAE0gl-_zvuR8gXoCVQqK_WpccxBl9WlMqSQklZ_YFMgCox46DUCZlQqepZXQl2Rs5TWlMKfK7gIzkDyfOnlhNyf4M2jNve-WUxrGIYl6vi587bXPpd4Xzx-HeI6YuFi3Z0Qype3bAqnmPYmqUZXPDFDfZmlz6R0870CT8f3yn5fXf7a_Fj9vD0_X7x7WFmOeNDvjEf6KgRpmaqsjU1nYDOgpzbFqs5E7JpmgobVivoKqskazgXreJCNcKyKbk89N3G8GfENOiNSxb73ngMY9KCcllJBhm8-AdchzHmVZKGeZYl9gYyxQ-UjSGliJ3eRrcxcaeB6r1ovdYH0XovWlPQOZtjX4_Nx2aD7XvoaDYD1wcAs4sXh1En69BbbF1EO-g2uP9PeAOh9JDY</recordid><startdate>20080410</startdate><enddate>20080410</enddate><creator>Lubenov, Evgueniy V.</creator><creator>Siapas, Athanassios G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080410</creationdate><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><author>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Experiments</topic><topic>Hippocampus - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Population</topic><topic>Rats</topic><topic>Sleep</topic><topic>Studies</topic><topic>SYSNEURO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubenov, Evgueniy V.</creatorcontrib><creatorcontrib>Siapas, Athanassios G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubenov, Evgueniy V.</au><au>Siapas, Athanassios G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2008-04-10</date><risdate>2008</risdate><volume>58</volume><issue>1</issue><spage>118</spage><epage>131</epage><pages>118-131</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18400168</pmid><doi>10.1016/j.neuron.2008.01.036</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2008-04, Vol.58 (1), p.118-131
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_70482831
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Action Potentials - physiology
Animals
Experiments
Hippocampus - physiology
Models, Neurological
Nerve Net - physiology
Neuronal Plasticity - physiology
Neurons
Neurons - physiology
Population
Rats
Sleep
Studies
SYSNEURO
title Decoupling through Synchrony in Neuronal Circuits with Propagation Delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20through%20Synchrony%20in%20Neuronal%20Circuits%20with%20Propagation%20Delays&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Lubenov,%20Evgueniy%20V.&rft.date=2008-04-10&rft.volume=58&rft.issue=1&rft.spage=118&rft.epage=131&rft.pages=118-131&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2008.01.036&rft_dat=%3Cproquest_cross%3E3234811521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503670168&rft_id=info:pmid/18400168&rfr_iscdi=true