Loading…
Decoupling through Synchrony in Neuronal Circuits with Propagation Delays
The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that wh...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2008-04, Vol.58 (1), p.118-131 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3 |
container_end_page | 131 |
container_issue | 1 |
container_start_page | 118 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 58 |
creator | Lubenov, Evgueniy V. Siapas, Athanassios G. |
description | The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas. |
doi_str_mv | 10.1016/j.neuron.2008.01.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70482831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627308001281</els_id><sourcerecordid>3234811521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</originalsourceid><addsrcrecordid>eNp9kFFr2zAQx8VoWdNs32AMQ6FvcXWWYkkvhZG2W6G0hW3PQpbPiYIjZZLdkm9fZQkU9jAE0gl-_zvuR8gXoCVQqK_WpccxBl9WlMqSQklZ_YFMgCox46DUCZlQqepZXQl2Rs5TWlMKfK7gIzkDyfOnlhNyf4M2jNve-WUxrGIYl6vi587bXPpd4Xzx-HeI6YuFi3Z0Qype3bAqnmPYmqUZXPDFDfZmlz6R0870CT8f3yn5fXf7a_Fj9vD0_X7x7WFmOeNDvjEf6KgRpmaqsjU1nYDOgpzbFqs5E7JpmgobVivoKqskazgXreJCNcKyKbk89N3G8GfENOiNSxb73ngMY9KCcllJBhm8-AdchzHmVZKGeZYl9gYyxQ-UjSGliJ3eRrcxcaeB6r1ovdYH0XovWlPQOZtjX4_Nx2aD7XvoaDYD1wcAs4sXh1En69BbbF1EO-g2uP9PeAOh9JDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503670168</pqid></control><display><type>article</type><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</creator><creatorcontrib>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</creatorcontrib><description>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2008.01.036</identifier><identifier>PMID: 18400168</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Animals ; Experiments ; Hippocampus - physiology ; Models, Neurological ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; Neurons ; Neurons - physiology ; Population ; Rats ; Sleep ; Studies ; SYSNEURO</subject><ispartof>Neuron (Cambridge, Mass.), 2008-04, Vol.58 (1), p.118-131</ispartof><rights>2008 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 10, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</citedby><cites>FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18400168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lubenov, Evgueniy V.</creatorcontrib><creatorcontrib>Siapas, Athanassios G.</creatorcontrib><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</description><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Experiments</subject><subject>Hippocampus - physiology</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Population</subject><subject>Rats</subject><subject>Sleep</subject><subject>Studies</subject><subject>SYSNEURO</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kFFr2zAQx8VoWdNs32AMQ6FvcXWWYkkvhZG2W6G0hW3PQpbPiYIjZZLdkm9fZQkU9jAE0gl-_zvuR8gXoCVQqK_WpccxBl9WlMqSQklZ_YFMgCox46DUCZlQqepZXQl2Rs5TWlMKfK7gIzkDyfOnlhNyf4M2jNve-WUxrGIYl6vi587bXPpd4Xzx-HeI6YuFi3Z0Qype3bAqnmPYmqUZXPDFDfZmlz6R0870CT8f3yn5fXf7a_Fj9vD0_X7x7WFmOeNDvjEf6KgRpmaqsjU1nYDOgpzbFqs5E7JpmgobVivoKqskazgXreJCNcKyKbk89N3G8GfENOiNSxb73ngMY9KCcllJBhm8-AdchzHmVZKGeZYl9gYyxQ-UjSGliJ3eRrcxcaeB6r1ovdYH0XovWlPQOZtjX4_Nx2aD7XvoaDYD1wcAs4sXh1En69BbbF1EO-g2uP9PeAOh9JDY</recordid><startdate>20080410</startdate><enddate>20080410</enddate><creator>Lubenov, Evgueniy V.</creator><creator>Siapas, Athanassios G.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080410</creationdate><title>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</title><author>Lubenov, Evgueniy V. ; Siapas, Athanassios G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Experiments</topic><topic>Hippocampus - physiology</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Population</topic><topic>Rats</topic><topic>Sleep</topic><topic>Studies</topic><topic>SYSNEURO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lubenov, Evgueniy V.</creatorcontrib><creatorcontrib>Siapas, Athanassios G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lubenov, Evgueniy V.</au><au>Siapas, Athanassios G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoupling through Synchrony in Neuronal Circuits with Propagation Delays</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2008-04-10</date><risdate>2008</risdate><volume>58</volume><issue>1</issue><spage>118</spage><epage>131</epage><pages>118-131</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>The level of synchronization in distributed systems is often controlled by the strength of the interactions between individual elements. In brain circuits the connection strengths between neurons are modified under the influence of spike-timing-dependent plasticity (STDP) rules. Here we show that when recurrent networks with conduction delays exhibit population bursts, STDP rules exert a strong decoupling force that desynchronizes activity. Conversely, when activity in the network is random, the same rules can have a coupling and synchronizing influence. The presence of these opposing forces promotes the self-organization of spontaneously active neuronal networks to a state at the border between randomness and synchrony. The decoupling force of STDP may be engaged by the synchronous bursts occurring in the hippocampus during slow-wave sleep, leading to the selective erasure of information from hippocampal circuits as memories are established in neocortical areas.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>18400168</pmid><doi>10.1016/j.neuron.2008.01.036</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2008-04, Vol.58 (1), p.118-131 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_70482831 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Action Potentials - physiology Animals Experiments Hippocampus - physiology Models, Neurological Nerve Net - physiology Neuronal Plasticity - physiology Neurons Neurons - physiology Population Rats Sleep Studies SYSNEURO |
title | Decoupling through Synchrony in Neuronal Circuits with Propagation Delays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoupling%20through%20Synchrony%20in%20Neuronal%20Circuits%20with%20Propagation%20Delays&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Lubenov,%20Evgueniy%20V.&rft.date=2008-04-10&rft.volume=58&rft.issue=1&rft.spage=118&rft.epage=131&rft.pages=118-131&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2008.01.036&rft_dat=%3Cproquest_cross%3E3234811521%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-c4e4e41f0a7a6392c60af71fc185cde25378bbb2eb3691f2c983b447d9479b7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503670168&rft_id=info:pmid/18400168&rfr_iscdi=true |