Loading…

MicroRNA-26a Targets the Histone Methyltransferase Enhancer of Zeste homolog 2 during Myogenesis

MicroRNA (miRNA) are important regulators of many bio×logical processes, but the targets for most miRNA are still poorly defined. In this study, we profiled the expression of miRNA during myogenesis, from proliferating myoblasts through to terminally differentiated myotubes. Microarray results ident...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2008-04, Vol.283 (15), p.9836-9843
Main Authors: Wong, Chung Fai, Tellam, Ross L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MicroRNA (miRNA) are important regulators of many bio×logical processes, but the targets for most miRNA are still poorly defined. In this study, we profiled the expression of miRNA during myogenesis, from proliferating myoblasts through to terminally differentiated myotubes. Microarray results identified six significantly differentially expressed miRNA that were more than 2-fold different in myotubes. From this list, miRNA-26a (miR-26a), an up-regulated miRNA, was further examined. Overexpression of miR-26a in murine myogenic C2C12 cells induced creatine kinase activity, an enzyme that markedly increases during myogenesis. Further, myoD and myogenin mRNA expression levels were also up-regulated. These results suggest that increased expression of miR-26a promotes myogenesis. Through a bioinformatics approach, we identified the histone methyltransferase, Enhancer of Zeste homolog 2 (Ezh2), as a potential target of miR-26a. Overexpression of miR-26a suppressed the activity of a luciferase reporter construct fused with the 3′-untranslated region of Ezh2. In addition, miR-26a overexpression decreased Ezh2 mRNA expression. These results reveal a model of regulation during myogenesis whereby the up-regulation of miR-26a acts to post-transcriptionally repress Ezh2, a known suppressor of skeletal muscle cell differentiation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M709614200