Loading…
Control of hormonal stress reactivity by the endogenous opioid system
Summary Regulations of hormonal stress responses entail the initiation, amplitude and termination of the reaction, as well as its integration with other stress response systems. This study investigates the role of endogenous opioids in the regulation and integration of behavioral, thermal and hormon...
Saved in:
Published in: | Psychoneuroendocrinology 2008-05, Vol.33 (4), p.425-436 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary Regulations of hormonal stress responses entail the initiation, amplitude and termination of the reaction, as well as its integration with other stress response systems. This study investigates the role of endogenous opioids in the regulation and integration of behavioral, thermal and hormonal stress responses, as these neuromodulators and their receptors are expressed in limbic structures responsible for stress responses. For this purpose, we subjected mice with selective deletion of β -endorphin, enkephalin or dynorphin to the zero-maze test, a mildly stressful situation, and registered behaviors and stress hormone levels. Behavioral stress reactivity was assessed using zero-maze, light–dark and startle-reactivity paradigms. Animals lacking enkephalin displayed increased anxiety-related behavioral responses in each three, dynorphin knockouts in two models, whereas the responses of β -endorphin knockouts indicated lower anxiety level in the zero-maze test. All knockout strains showed marked changes in hormonal stress reactivity. Increase in ACTH level after zero-maze test situation, unlike in wild type animals, failed to reach the level of significance in Penk1−/− and Pdyn−/− mice. Corticosterone plasma levels rapidly increased in all strains, with a lower peak response in knockouts. In wild-type and β -endorphin-deficient mice, corticosterone levels returned to baseline within 60 min after stress exposure. In contrast, mice lacking dynorphin and enkephalin showed longer-lasting elevated corticosterone levels, indicating a delayed termination of the stress reaction. Importantly, the behavioral and hormonal responses correlated in wild-type but not in knockout mice. Hyperthermia elicited by stress was reduced in animals lacking dynorphin and absent in Penk1−/− mice, despite of the heightened behavioral anxiety level of these strains. These results demonstrate an important role on the endogenous opioid system in the integration of behavioral and hormonal stress responses. |
---|---|
ISSN: | 0306-4530 1873-3360 |
DOI: | 10.1016/j.psyneuen.2007.12.010 |