Loading…

Silencing of PR-10-like proteins in Medicago truncatula results in an antagonistic induction of other PR proteins and in an increased tolerance upon infection with the oomycete Aphanomyces euteiches

Recent studies on the root proteome of Medicago truncatula (Gaertn.) showed an induction of pathogenesis-related (PR) proteins of the class 10 after infection with the oomycete pathogen Aphanomyces euteiches (Drechs.). To get insights into the function of these proteins during the parasitic root-mic...

Full description

Saved in:
Bibliographic Details
Published in:Planta 2007-06, Vol.226 (1), p.57-71
Main Authors: Colditz, Frank, Niehaus, Karsten, Krajinski, Franziska
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent studies on the root proteome of Medicago truncatula (Gaertn.) showed an induction of pathogenesis-related (PR) proteins of the class 10 after infection with the oomycete pathogen Aphanomyces euteiches (Drechs.). To get insights into the function of these proteins during the parasitic root-microbe association, a gene knockdown approach using RNAi was carried out. Agrobacterium rhizogenes-mediated transformation of M. truncatula roots led to a knockdown of the Medicago PR10-1 gene in transgenic in vitro root cultures. Proteomic analyses of the MtPr10-1i root cultures showed that MtPr10-1 was efficiently knocked down in two MtPr10-1i lines. Moreover, five additional PR-10-type proteins annotated as abscisic acid responsive proteins (ABR17s) revealed also an almost complete silencing in these two lines. Inoculation of the root cultures with the oomycete root pathogen A. euteiches resulted in a clearly reduced colonization and thus in a suppressed infection development in MtPr10-1i roots as compared to that in roots of the transformation controls. In addition, MtPr10-1 silencing led to the induction of a new set of PR proteins after infection with A. euteiches including the de novo induction of two isoforms of thaumatin-like proteins (PR-5b), which were not detectable in A. euteiches-infected control roots. Thus, antagonistic induction of other PR proteins, which are normally repressed due to PR-10 expression, is supposed to cause an increased resistance of M. truncatula upon an A. euteiches in vitro infection. The results were also further confirmed by detecting increased PR-5b induction levels in 2-D gels of a previously analyzed M. truncatula line (F83.005-9) exhibiting increased A. euteiches tolerance associated with reduced PR-10 induction levels.
ISSN:0032-0935
1432-2048
DOI:10.1007/s00425-006-0466-y