Loading…
Correlation between a novel calpastatin biosensor and traditional calpastatin assay techniques
An optical fiber biosensor to detect calpastatin has been investigated as a preliminary step in developing tenderness detection instrumentation. Longissimus dorsi samples were taken from beef carcasses (n=21) at 0, 24, 36 and 48h postmortem. Muscle homogenates were assayed for calpastatin activity u...
Saved in:
Published in: | Biosensors & bioelectronics 2008-05, Vol.23 (10), p.1429-1434 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optical fiber biosensor to detect calpastatin has been investigated as a preliminary step in developing tenderness detection instrumentation. Longissimus dorsi samples were taken from beef carcasses (n=21) at 0, 24, 36 and 48h postmortem. Muscle homogenates were assayed for calpastatin activity using traditional methods and an optical fiber biosensor. Warner–Bratzler shear force was also performed on a steak from each carcass at 14d postmortem. Results demonstrated that the measurements with highest correlation between traditional calpastatin assays and optical biosensor readings were taken at 48h postmortem (r=0.597, P≤0.01), suggesting that this is the best time for use of this biosensor in an on-line grading system. This research further advances the development of a calpastatin biosensor and would be useful in laboratory determination of the presence of biologically active calpastatin concentrations. |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2007.12.014 |