Loading…
A Novel Lantibiotic Acting on Bacterial Cell Wall Synthesis Produced by the Uncommon Actinomycete Planomonospora sp
Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as β-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan...
Saved in:
Published in: | Biochemistry (Easton) 2007-05, Vol.46 (20), p.5884-5895 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Important classes of antibiotics acting on bacterial cell wall biosynthesis, such as β-lactams and glycopeptides, are used extensively in therapy and are now faced with a challenge because of the progressive spread of resistant pathogens. A discovery program was devised to target novel peptidoglycan biosynthesis inhibitors capable of overcoming these resistance mechanisms. The microbial products were first screened according to their differential activity against Staphylococcus aureus and its L-form. Then, activities insensitive to the addition of a β-lactamase cocktail or d-alanyl-d-alanine affinity resin were selected. Thirty-five lantibiotics were identified from a library of broth extracts produced by 40,000 uncommon actinomycetes. Five of them showed structural characteristics that did not match with any known microbial metabolite. In this study, we report on the production, structure determination, and biological activity of one of these novel lantibiotics, namely, planosporicin, which is produced by the uncommon actinomycete Planomonospora sp. Planosporicin is a 2194 Da polypeptide originating from 24 proteinogenic amino acids. It contains lanthionine and methyllanthionine amino acids generating five intramolecular thioether bridges. Planosporicin selectively blocks peptidoglycan biosynthesis and causes accumulation of UDP-linked peptidoglycan precursors in growing bacterial cells. On the basis of its mode of action and globular structure, planosporicin can be assigned to the mersacidin (20 amino acids, 1825 Da) and the actagardine (19 amino acids, 1890 Da) subgroup of type B lantibiotics. Considering its spectrum of activity against Gram-positive pathogens of medical importance, including multi-resistant clinical isolates, and its efficacy in vivo, planosporicin represents a potentially new antibiotic to treat emerging pathogens. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi700131x |