Loading…

CO2 Fixation Kinetics of Halothiobacillus neapolitanus Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO2

The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxy...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2008-04, Vol.283 (16), p.10377-10384
Main Authors: Dou, Zhicheng, Heinhorst, Sabine, Williams, Eric B., Murin, C. Daniel, Shively, Jessup M., Cannon, Gordon C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations of its substrate, CO2, to permit its efficient fixation onto ribulose 1,5-bisphosphate. In this study, structure and function of carboxysomes purified from wild type Halothiobacillus neapolitanus and from a high CO2-requiring mutant that is devoid of carboxysomal carbonic anhydrase were compared. The kinetic constants for the carbon fixation reaction confirmed the importance of a functional carboxysomal carbonic anhydrase for efficient catalysis by RubisCO. Furthermore, comparisons of the reaction in intact and broken microcompartments and by purified carboxysomal RubisCO implicated the protein shell of the microcompartment as impeding diffusion of CO2 into and out of the carboxysome interior.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M709285200