Loading…
Weak localization in bilayer graphene
We have performed the first experimental investigation of quantum interference corrections to the conductivity of a bilayer graphene structure. A negative magnetoresistance--a signature of weak localization--is observed at different carrier densities, including the electroneutrality region. It is ve...
Saved in:
Published in: | Physical review letters 2007-04, Vol.98 (17), p.176805-176805, Article 176805 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have performed the first experimental investigation of quantum interference corrections to the conductivity of a bilayer graphene structure. A negative magnetoresistance--a signature of weak localization--is observed at different carrier densities, including the electroneutrality region. It is very different, however, from the weak localization in conventional two-dimensional systems. We show that it is controlled not only by the dephasing time, but also by different elastic processes that break the effective time-reversal symmetry and provide intervalley scattering. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.98.176805 |