Loading…

Genetic Identity Determines Risk of Post-Settlement Mortality of a Marine Fish

Longitudinal sampling of four cohorts of Neopomacentrus filamentosus, a common tropical damselfish from Dampier Archipelago, Western Australia, revealed the evolution of size structure after settlement. Light traps collected premetamorphic individuals from the water column ("settlers") to...

Full description

Saved in:
Bibliographic Details
Published in:Ecology (Durham) 2007-05, Vol.88 (5), p.1263-1277
Main Authors: Vigliola, Laurent, Doherty, Peter J., Meekan, Mark G., Drown, Devin M., Jones, M. Elizabeth, Barber, Paul H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Longitudinal sampling of four cohorts of Neopomacentrus filamentosus, a common tropical damselfish from Dampier Archipelago, Western Australia, revealed the evolution of size structure after settlement. Light traps collected premetamorphic individuals from the water column ("settlers") to establish a baseline for each cohort. Subsequently, divers collected benthic juveniles ("recruits") at 1—3-month intervals to determine the relative impacts of post-settlement mortality during the first three months. Growth trajectories for individual fish were back-calculated from otolith records and compared with nonlinear mixed-effects models. Size-selective mortality was detected in all cohorts with the loss of smaller, slower growing individuals. Three months after settlement, recruits showed significantly faster growth as juveniles, faster growth as larvae, and larger sizes as hatchlings. The timing and intensity of post-settlement selection differed among cohorts and was correlated with density at settlement. The cohort with the greatest initial abundance experienced the strongest selective mortality, with most of this mortality occurring between one and two months after settlement when juveniles began foraging at higher positions in the water column. Significant genetic structure was found between settlers and three-month-old recruits in this cohort as a result of natural selection that changed the frequency of mtDNA haplotypes measured at the control region. The extent of this genetic difference was enlarged or reduced by artificially manipulating the intensity of size-based selection, thus establishing a link between phenotype and haplotype. Sequence variation in the control region of the mitochondrial genome has been linked to mitochondrial efficiency and weight gain in other studies, which provides a plausible explanation for the patterns observed here.
ISSN:0012-9658
1939-9170
DOI:10.1890/06-0066