Loading…

A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations

A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae , and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are “silent,” that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are de...

Full description

Saved in:
Bibliographic Details
Published in:Nature biotechnology 2001-01, Vol.19 (1), p.45-50
Main Authors: Oliver, Stephen G, Raamsdonk, Léonie M, Teusink, Bas, Broadhurst, David, Zhang, Nianshu, Hayes, Andrew, Walsh, Michael C, Berden, Jan A, Brindle, Kevin M, Kell, Douglas B, Rowland, Jem J, Westerhoff, Hans V, van Dam, Karel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3
cites cdi_FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3
container_end_page 50
container_issue 1
container_start_page 45
container_title Nature biotechnology
container_volume 19
creator Oliver, Stephen G
Raamsdonk, Léonie M
Teusink, Bas
Broadhurst, David
Zhang, Nianshu
Hayes, Andrew
Walsh, Michael C
Berden, Jan A
Brindle, Kevin M
Kell, Douglas B
Rowland, Jem J
Westerhoff, Hans V
van Dam, Karel
description A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae , and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are “silent,” that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are deleted from the genome. We demonstrate how the intracellular concentrations of metabolites can reveal phenotypes for proteins active in metabolic regulation. Quantification of the change of several metabolite concentrations relative to the concentration change of one selected metabolite can reveal the site of action, in the metabolic network, of a silent gene. In the same way, comprehensive analyses of metabolite concentrations in mutants, providing “metabolic snapshots,” can reveal functions when snapshots from strains deleted for unstudied genes are compared to those deleted for known genes. This approach to functional analysis, using comparative metabolomics, we call FANCY—an abbreviation for functional analysis by co-responses in yeast.
doi_str_mv 10.1038/83496
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70569031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190009550</galeid><sourcerecordid>A190009550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3</originalsourceid><addsrcrecordid>eNqNkk9r3DAQxU1padI0X6GIlgZ6cCpZliwfl9C0gUCg_65ClkdeB1vaauTQ_fZVukuW5NJKBwn0e2-YpymKU0bPGeXqo-J1K58Vx0zUsmSylc_znaqmpEzIo-IV4i2lVNZSviyOGGNcCMGOi35F3OJtGoM3ExnAh3m0SDBFk2DYkrQ2iSwISGZIpgtTmIH0JhmSAolwB1mV1kA26yxN2w2Q4AiOE_hE5iWZe2N8XbxwZkI43Z8nxY_LT98vvpTXN5-vLlbXpRWSprKqmFO0a2ra1m3nZNXJzlrrZAO2lRWvnDOy6aVroKqbXnHHBTOC9nVuTNU9PynOdr6bGH4tgEnPI1qYJuMhLKgbKmRLOfsnyBrFBK2aDL59At6GJeaoUFd5ScVbnqHzHTSYCfToXcjp2bx7yGEGDy7noVeszR_QCkGz4MMjQWYS_E6DWRD11bev_8_e_HzMvt-xNgbECE5v4jibuNWM6vsp0X-nJHNv9l0t3Qz9gdqPRQbe7QGD1kwuGm9HfOByMdWqQ4qYH_wA8RDO03pkB3qTlggPPr5LlFGma8H_ABcR19A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222268393</pqid></control><display><type>article</type><title>A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations</title><source>Nature Journals Online</source><creator>Oliver, Stephen G ; Raamsdonk, Léonie M ; Teusink, Bas ; Broadhurst, David ; Zhang, Nianshu ; Hayes, Andrew ; Walsh, Michael C ; Berden, Jan A ; Brindle, Kevin M ; Kell, Douglas B ; Rowland, Jem J ; Westerhoff, Hans V ; van Dam, Karel</creator><creatorcontrib>Oliver, Stephen G ; Raamsdonk, Léonie M ; Teusink, Bas ; Broadhurst, David ; Zhang, Nianshu ; Hayes, Andrew ; Walsh, Michael C ; Berden, Jan A ; Brindle, Kevin M ; Kell, Douglas B ; Rowland, Jem J ; Westerhoff, Hans V ; van Dam, Karel</creatorcontrib><description>A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae , and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are “silent,” that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are deleted from the genome. We demonstrate how the intracellular concentrations of metabolites can reveal phenotypes for proteins active in metabolic regulation. Quantification of the change of several metabolite concentrations relative to the concentration change of one selected metabolite can reveal the site of action, in the metabolic network, of a silent gene. In the same way, comprehensive analyses of metabolite concentrations in mutants, providing “metabolic snapshots,” can reveal functions when snapshots from strains deleted for unstudied genes are compared to those deleted for known genes. This approach to functional analysis, using comparative metabolomics, we call FANCY—an abbreviation for functional analysis by co-responses in yeast.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/83496</identifier><identifier>PMID: 11135551</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Adenine Nucleotides - metabolism ; Agriculture ; Bioinformatics ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Cluster Analysis ; Energy Metabolism - genetics ; Fundamental and applied biological sciences. Psychology ; Genome, Fungal ; Genomics ; Genomics - methods ; Genotype ; Growth, nutrition, metabolism, transports, enzymes. Molecular biology ; Hexosephosphates - metabolism ; Life Sciences ; Metabolites ; Microbiology ; Mutation ; Mycology ; Phenotype ; Proteins ; Pyruvates - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Yeast ; Yeasts</subject><ispartof>Nature biotechnology, 2001-01, Vol.19 (1), p.45-50</ispartof><rights>Nature America Inc. 2001</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3</citedby><cites>FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=955898$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11135551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliver, Stephen G</creatorcontrib><creatorcontrib>Raamsdonk, Léonie M</creatorcontrib><creatorcontrib>Teusink, Bas</creatorcontrib><creatorcontrib>Broadhurst, David</creatorcontrib><creatorcontrib>Zhang, Nianshu</creatorcontrib><creatorcontrib>Hayes, Andrew</creatorcontrib><creatorcontrib>Walsh, Michael C</creatorcontrib><creatorcontrib>Berden, Jan A</creatorcontrib><creatorcontrib>Brindle, Kevin M</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Rowland, Jem J</creatorcontrib><creatorcontrib>Westerhoff, Hans V</creatorcontrib><creatorcontrib>van Dam, Karel</creatorcontrib><title>A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae , and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are “silent,” that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are deleted from the genome. We demonstrate how the intracellular concentrations of metabolites can reveal phenotypes for proteins active in metabolic regulation. Quantification of the change of several metabolite concentrations relative to the concentration change of one selected metabolite can reveal the site of action, in the metabolic network, of a silent gene. In the same way, comprehensive analyses of metabolite concentrations in mutants, providing “metabolic snapshots,” can reveal functions when snapshots from strains deleted for unstudied genes are compared to those deleted for known genes. This approach to functional analysis, using comparative metabolomics, we call FANCY—an abbreviation for functional analysis by co-responses in yeast.</description><subject>Adenine Nucleotides - metabolism</subject><subject>Agriculture</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Cluster Analysis</subject><subject>Energy Metabolism - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome, Fungal</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</subject><subject>Hexosephosphates - metabolism</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Microbiology</subject><subject>Mutation</subject><subject>Mycology</subject><subject>Phenotype</subject><subject>Proteins</subject><subject>Pyruvates - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqNkk9r3DAQxU1padI0X6GIlgZ6cCpZliwfl9C0gUCg_65ClkdeB1vaauTQ_fZVukuW5NJKBwn0e2-YpymKU0bPGeXqo-J1K58Vx0zUsmSylc_znaqmpEzIo-IV4i2lVNZSviyOGGNcCMGOi35F3OJtGoM3ExnAh3m0SDBFk2DYkrQ2iSwISGZIpgtTmIH0JhmSAolwB1mV1kA26yxN2w2Q4AiOE_hE5iWZe2N8XbxwZkI43Z8nxY_LT98vvpTXN5-vLlbXpRWSprKqmFO0a2ra1m3nZNXJzlrrZAO2lRWvnDOy6aVroKqbXnHHBTOC9nVuTNU9PynOdr6bGH4tgEnPI1qYJuMhLKgbKmRLOfsnyBrFBK2aDL59At6GJeaoUFd5ScVbnqHzHTSYCfToXcjp2bx7yGEGDy7noVeszR_QCkGz4MMjQWYS_E6DWRD11bev_8_e_HzMvt-xNgbECE5v4jibuNWM6vsp0X-nJHNv9l0t3Qz9gdqPRQbe7QGD1kwuGm9HfOByMdWqQ4qYH_wA8RDO03pkB3qTlggPPr5LlFGma8H_ABcR19A</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Oliver, Stephen G</creator><creator>Raamsdonk, Léonie M</creator><creator>Teusink, Bas</creator><creator>Broadhurst, David</creator><creator>Zhang, Nianshu</creator><creator>Hayes, Andrew</creator><creator>Walsh, Michael C</creator><creator>Berden, Jan A</creator><creator>Brindle, Kevin M</creator><creator>Kell, Douglas B</creator><creator>Rowland, Jem J</creator><creator>Westerhoff, Hans V</creator><creator>van Dam, Karel</creator><general>Nature Publishing Group US</general><general>Nature</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations</title><author>Oliver, Stephen G ; Raamsdonk, Léonie M ; Teusink, Bas ; Broadhurst, David ; Zhang, Nianshu ; Hayes, Andrew ; Walsh, Michael C ; Berden, Jan A ; Brindle, Kevin M ; Kell, Douglas B ; Rowland, Jem J ; Westerhoff, Hans V ; van Dam, Karel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenine Nucleotides - metabolism</topic><topic>Agriculture</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Cluster Analysis</topic><topic>Energy Metabolism - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome, Fungal</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</topic><topic>Hexosephosphates - metabolism</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Microbiology</topic><topic>Mutation</topic><topic>Mycology</topic><topic>Phenotype</topic><topic>Proteins</topic><topic>Pyruvates - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliver, Stephen G</creatorcontrib><creatorcontrib>Raamsdonk, Léonie M</creatorcontrib><creatorcontrib>Teusink, Bas</creatorcontrib><creatorcontrib>Broadhurst, David</creatorcontrib><creatorcontrib>Zhang, Nianshu</creatorcontrib><creatorcontrib>Hayes, Andrew</creatorcontrib><creatorcontrib>Walsh, Michael C</creatorcontrib><creatorcontrib>Berden, Jan A</creatorcontrib><creatorcontrib>Brindle, Kevin M</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><creatorcontrib>Rowland, Jem J</creatorcontrib><creatorcontrib>Westerhoff, Hans V</creatorcontrib><creatorcontrib>van Dam, Karel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliver, Stephen G</au><au>Raamsdonk, Léonie M</au><au>Teusink, Bas</au><au>Broadhurst, David</au><au>Zhang, Nianshu</au><au>Hayes, Andrew</au><au>Walsh, Michael C</au><au>Berden, Jan A</au><au>Brindle, Kevin M</au><au>Kell, Douglas B</au><au>Rowland, Jem J</au><au>Westerhoff, Hans V</au><au>van Dam, Karel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2001-01</date><risdate>2001</risdate><volume>19</volume><issue>1</issue><spage>45</spage><epage>50</epage><pages>45-50</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>A large proportion of the 6,000 genes present in the genome of Saccharomyces cerevisiae , and of those sequenced in other organisms, encode proteins of unknown function. Many of these genes are “silent,” that is, they show no overt phenotype, in terms of growth rate or other fluxes, when they are deleted from the genome. We demonstrate how the intracellular concentrations of metabolites can reveal phenotypes for proteins active in metabolic regulation. Quantification of the change of several metabolite concentrations relative to the concentration change of one selected metabolite can reveal the site of action, in the metabolic network, of a silent gene. In the same way, comprehensive analyses of metabolite concentrations in mutants, providing “metabolic snapshots,” can reveal functions when snapshots from strains deleted for unstudied genes are compared to those deleted for known genes. This approach to functional analysis, using comparative metabolomics, we call FANCY—an abbreviation for functional analysis by co-responses in yeast.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11135551</pmid><doi>10.1038/83496</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2001-01, Vol.19 (1), p.45-50
issn 1087-0156
1546-1696
language eng
recordid cdi_proquest_miscellaneous_70569031
source Nature Journals Online
subjects Adenine Nucleotides - metabolism
Agriculture
Bioinformatics
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cluster Analysis
Energy Metabolism - genetics
Fundamental and applied biological sciences. Psychology
Genome, Fungal
Genomics
Genomics - methods
Genotype
Growth, nutrition, metabolism, transports, enzymes. Molecular biology
Hexosephosphates - metabolism
Life Sciences
Metabolites
Microbiology
Mutation
Mycology
Phenotype
Proteins
Pyruvates - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Yeast
Yeasts
title A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20functional%20genomics%20strategy%20that%20uses%20metabolome%20data%20to%20reveal%20the%20phenotype%20of%20silent%20mutations&rft.jtitle=Nature%20biotechnology&rft.au=Oliver,%20Stephen%20G&rft.date=2001-01&rft.volume=19&rft.issue=1&rft.spage=45&rft.epage=50&rft.pages=45-50&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/83496&rft_dat=%3Cgale_proqu%3EA190009550%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c560t-221f80b740949bf62b6bcccf67ec96232ffa67d6f7e247d83f351a50d400684d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=222268393&rft_id=info:pmid/11135551&rft_galeid=A190009550&rfr_iscdi=true