Loading…

Synthesis of chiral α-hydroxy amides by two sequential enzymatic catalyzed reactions

Enantiomerically pure α-hydroxy amides have been prepared from the corresponding α-oxo esters by the use of a double sequence reaction involving in a first step the highly enantioselective Saccharomyces cerevisiae bioreduction and then in a second step, the resulting α-hydroxy esters followed a non-...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2007-05, Vol.75 (2), p.297-302
Main Authors: Salinas, Yeritzia, Oliart, Rosa María, Ramírez-Lepe, Mario, Navarro-Ocaña, Arturo, Valerio-Alfaro, Gerardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enantiomerically pure α-hydroxy amides have been prepared from the corresponding α-oxo esters by the use of a double sequence reaction involving in a first step the highly enantioselective Saccharomyces cerevisiae bioreduction and then in a second step, the resulting α-hydroxy esters followed a non-enantiospecific lipase catalyzed aminolysis with n-butylamine reaction. In the first non-organic solvent process, the moistened baker's yeast reduced seven α-oxo esters with high conversions degree (93% for one substrate and >99% for the others) and high enantioselectivities [>99% for all the substrates except for ketopantoyl lactone, which gave 88% of enantiomeric excess (ee)]. At the same way, the isolated resulting chiral α-hydroxy esters were subjected to the second Candida antarctica lipase fraction B (CAL-B) catalyzed aminolysis in dioxane conducting to the corresponding chiral α-hydroxy amides with high conversions degree, between 88 and 99%. Both processes were carried out at 28-30°C.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-006-0829-0