Loading…

The use of physical hydrogels of chitosan for skin regeneration following third-degree burns

Abstract Skin repair is an important field of the tissue engineering, especially in the case of extended third-degree burns, where the current treatments are still insufficient in promoting satisfying skin regeneration. Bio-inspired bi-layered physical hydrogels only constituted of chitosan and wate...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2007-08, Vol.28 (24), p.3478-3488
Main Authors: Boucard, Nadège, Viton, Christophe, Agay, Diane, Mari, Eliane, Roger, Thierry, Chancerelle, Yves, Domard, Alain
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Skin repair is an important field of the tissue engineering, especially in the case of extended third-degree burns, where the current treatments are still insufficient in promoting satisfying skin regeneration. Bio-inspired bi-layered physical hydrogels only constituted of chitosan and water were processed and applied to the treatment of full-thickness burn injuries. The aim of the study was at assessing whether this material was totally accepted by the host organism and allowed in vivo skin reconstruction of limited area third-degree burns. A first layer constituted of a rigid protective gel ensured good mechanical properties and gas exchanges. A second soft and flexible layer allowed the material to follow the geometry of the wound and ensured a good superficial contact. To compare, highly viscous solutions of chitosan were also considered. Veterinary experiments were performed on pig's skins and biopsies at days 9, 17, 22, 100 and 293, were analysed by histology and immuno-histochemistry. Only one chitosan material was used for each time. All the results showed that chitosan materials were well tolerated and promoted a good tissue regeneration. They induced inflammatory cells migration and angiogenetic activity favouring a high vascularisation of the neo-tissue. At day 22, type I and IV collagens were synthesised under the granulation tissue and the formation of the dermal–epidermal junction was observed. After 100 days, the new tissue was quite similar to a native skin, especially by its aesthetic aspect and its great flexibility.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2007.04.021