Loading…
The Quantum Origins of the Free Induction Decay Signal and Spin Noise
Experiments are described that elucidate the quantum mechanical origins of the free induction decay voltage and of spin noise. It is shown that the experimentally measured FID voltage induced in a Hertzian loop receiving coil following a 90° pulse is typically two orders of magnitude too large to be...
Saved in:
Published in: | Journal of magnetic resonance (1997) 2001-01, Vol.148 (1), p.182-199 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experiments are described that elucidate the quantum mechanical origins of the free induction decay voltage and of spin noise. It is shown that the experimentally measured FID voltage induced in a Hertzian loop receiving coil following a 90° pulse is typically two orders of magnitude too large to be accounted for by the current quantum theory of signal reception—coherent spontaneous emission. An experiment is then presented in which spin noise is easily observed in a circuit with a Q-factor of order unity, thereby undermining a popular hypothesis that such noise is due to spontaneous emission and is only observable because of the enhancement in the density of the radiation field in a high Q-factor tuned circuit, the NMR probe. Both the free induction decay and the spin noise are shown to be accurately predicted by near-field Faraday induction, which is described in the theory of quantum electrodynamics by an exchange of virtual photons. A heuristic approach to understanding the nature and role of virtual photons in the signal reception process is then given. Thus current popular statements that observation of the magnetic resonance phenomenon relies on the absorption and emission of radio waves are shown to be wrong. |
---|---|
ISSN: | 1090-7807 1096-0856 |
DOI: | 10.1006/jmre.2000.2229 |