Loading…

Tethered polyelectrolytes under the action of an electrical field : A molecular-dynamics study

For a polyelectrolyte undergoing electrophoretic motion, it is predicted (D. Long, J.L. Viovy, A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996); D. Long, A. Ajdari, Electrophoresis 17, 1161 (1996)) that the mechanical force necessary to stall the molecule is substantially smaller than the sum of electric...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2007-05, Vol.23 (1), p.83-89, Article 83
Main Authors: BERTRAND, M, SLATER, G. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For a polyelectrolyte undergoing electrophoretic motion, it is predicted (D. Long, J.L. Viovy, A. Ajdari, Phys. Rev. Lett. 76, 3858 (1996); D. Long, A. Ajdari, Electrophoresis 17, 1161 (1996)) that the mechanical force necessary to stall the molecule is substantially smaller than the sum of electrical forces applied on all monomers. In fact, it should be proportional to its hydrodynamic friction coefficient and therefore to the size of its conformation. In our work we examine this prediction using coarse-grained molecular-dynamics simulations in which we explicitly include the polymer, the solvent, the counterions and salt. The electrophoretic mobility of polyelectrolytes is evaluated, the mechanical force necessary to keep the molecules tethered is measured and the resulting anisotropic polymer conformations are observed and quantified. Our results corroborate Long et al.'s prediction.
ISSN:1292-8941
1292-895X
DOI:10.1140/epje/i2007-10179-2