Loading…
Effect of chaotic vasomotion in skeletal muscle on tissue oxygenation
Vasomotion refers to spontaneous variations in the lumen size of small vessels, with a plausible role in regulation of various aspects of microcirculation. We propose a computational model of vasomotion in skeletal muscle in which the pattern of vasomotion is shown to critically determine the effici...
Saved in:
Published in: | Microvascular research 2007-07, Vol.74 (1), p.51-64 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vasomotion refers to spontaneous variations in the lumen size of small vessels, with a plausible role in regulation of various aspects of microcirculation. We propose a computational model of vasomotion in skeletal muscle in which the pattern of vasomotion is shown to critically determine the efficiency of oxygenation of a muscle fiber. In this model, precapillary sphincters are modeled as nonlinear oscillators. We hypothesize that these sphincters interact via exchange of vasoactive substances. As a consequence, vasomotion is described as a phenomenon associated with a network of nonlinear oscillators. As a specific instance, we model the vasomotion of precapillary sphincters surrounding an active fiber. The sphincters coordinate their rhythms so as to minimize oxygen deficit in the fiber. Our modeling studies indicate that efficient oxygenation of the fiber depends crucially on the mode of interaction among the vasomotions of individual sphincters. While chaotic forms of vasomotion enhanced oxygenation, regular patterns of vasomotion failed to meet the oxygenation demand accurately. |
---|---|
ISSN: | 0026-2862 1095-9319 |
DOI: | 10.1016/j.mvr.2007.02.004 |