Loading…

Enhanced Detection of Live Bacteria Using a Dendrimer Thin Film in an Optical Biosensor

Here we describe the detection of live Pseudomonas aeruginosa using a sensing film containing a fourth-generation hydroxy-terminated polyamidoamine (PAMAM) dendrimer (i.e., G4-OH) and SYTOX Green fluorescent nucleic acid stain. The films are configured on simple, disposable plastic coupons or optica...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2001-02, Vol.73 (3), p.467-470
Main Authors: Chang, An-Cheng, Gillespie, James B, Tabacco, Mary Beth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here we describe the detection of live Pseudomonas aeruginosa using a sensing film containing a fourth-generation hydroxy-terminated polyamidoamine (PAMAM) dendrimer (i.e., G4-OH) and SYTOX Green fluorescent nucleic acid stain. The films are configured on simple, disposable plastic coupons or optical fibers and are interrogated using a miniature fiber-optic spectrometer. SYTOX Green is generally considered a dead cell stain because it is not able to cross the membranes of live cells. In the presence of PAMAM-OH (G4-OH) in water, the bacterial cell becomes permeable to the SYTOX dye and the fluorescence is significantly enhanced. The fluorescence increases with the bacteria concentration, and the intensity at 5.4 × 107 cells mL-1 is 350% higher than the liquid controls without PAMAM-OH. We also demonstrate that dendrimers stabilize the sensing film. After drying and desiccation, the SYTOX Green/PAMAM-OH films are still able to quantitatively detect P. aeruginosa in water. Incorporation of glucose into the SYTOX Green/PAMAM-OH film may improve the homogeneity of the film and enhances the fluorescence signal an additional 11−25%.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac000460a