Loading…

Differentiation of osteoblasts from mouse embryonic stem cells without generation of embryoid body

Osteoblasts are cells specialized in extracellular matrix production and mineralization. In collaboration with osteoclasts which are bone-resorbing cells, osteoblasts regulate bone homeostasis. The study of osteoblast differentiation from the earliest states of the differentiation can be performed u...

Full description

Saved in:
Bibliographic Details
Published in:In vitro cellular & developmental biology. Animal 2007-01, Vol.43 (1), p.21-24
Main Authors: Duplomb, Laurence, Dagouassat, Maylis, Jourdon, Philippe, Heymann, Dominique
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoblasts are cells specialized in extracellular matrix production and mineralization. In collaboration with osteoclasts which are bone-resorbing cells, osteoblasts regulate bone homeostasis. The study of osteoblast differentiation from the earliest states of the differentiation can be performed using embryonic stem cells. Embryonic stem cells are pluripotent cells which have the capacity to give rise to all kinds of cells of the body. The main protocol to differentiate embryonic stem cells into osteoblast uses the generation of embryoid body which is a three-dimensional structure mimicking the developing embryo. Recently, it has been shown that human embryonic stem cells have the capacity to differentiate spontaneously into osteoblasts. In this manuscript, we showed that mouse embryonic stem cells have the capacity to differentiate spontaneously into osteoblasts, which can be visualized by the appearance of mineralization nodules and osteogenic markers.
ISSN:1071-2690
1543-706X
DOI:10.1007/s11626-006-9010-4