Loading…
Membrane Depolarization Mediates Phosphorylation and Nuclear Translocation of CREB in Vascular Smooth Muscle Cells
Diverse signals have the potential to modulate gene transcription through the Ca2+ and cAMP response element binding protein (CREB) in vascular smooth muscle cells (VSMCs). A key step in the transmission of these signals is import into the nucleus. Here, we provide evidence that the Ran GTPase, whic...
Saved in:
Published in: | Experimental cell research 2001-02, Vol.263 (1), p.118-130 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diverse signals have the potential to modulate gene transcription through the Ca2+ and cAMP response element binding protein (CREB) in vascular smooth muscle cells (VSMCs). A key step in the transmission of these signals is import into the nucleus. Here, we provide evidence that the Ran GTPase, which regulates nuclear import, exerts different regulation over PDGF-BB, Ca2+, and cAMP signaling to CREB in VSMCs. PDGF-BB, membrane depolarization, and forskolin increased levels of activated CREB (P-CREB) and c-fos in VSMCs and intact aorta. The calcium channel antagonist nimodipine reduced the level of P-CREB stimulated by membrane depolarization, but not by PDGF-BB or forskolin. Block of Ran-mediated nuclear import, by wheat germ agglutinin or an inactivating Ran mutant (T24N Ran), significantly reduced nuclear P-CREB in response to PDGF-BB or membrane depolarization, but enhanced levels of P-CREB in response to forskolin. Contrary to expectation, block of nuclear import led to the appearance of P-CREB in the cytoplasm after depolarization. Furthermore, blocking nuclear export with leptomycin B reduced P-CREB stimulation by both depolarization and PDGF-BB. These results suggest that translocation of CREB between the nucleus and the cytoplasm provides an important role in CREB activating pathways in VSMCs. |
---|---|
ISSN: | 0014-4827 1090-2422 |
DOI: | 10.1006/excr.2000.5107 |