Loading…

Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine

The human cell is a symbiosis of two life forms, the nucleus-cytosol and the mitochondrion. The nucleus-cytosol emphasizes structure and its genes are Mendelian, whereas the mitochondrion specializes in energy and its mitochondrial DNA (mtDNA) genes are maternal. Mitochondria oxidize calories via ox...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of biochemistry 2007-01, Vol.76 (1), p.781-821
Main Author: Wallace, Douglas C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The human cell is a symbiosis of two life forms, the nucleus-cytosol and the mitochondrion. The nucleus-cytosol emphasizes structure and its genes are Mendelian, whereas the mitochondrion specializes in energy and its mitochondrial DNA (mtDNA) genes are maternal. Mitochondria oxidize calories via oxidative phosphorylation (OXPHOS) to generate a mitochondrial inner membrane proton gradient (DeltaP). DeltaP then acts as a source of potential energy to produce ATP, generate heat, regulate reactive oxygen species (ROS), and control apoptosis, etc. Interspecific comparisons of mtDNAs have revealed that the mtDNA retains a core set of electron and proton carrier genes for the proton-translocating OXPHOS complexes I, III, IV, and V. Human mtDNA analysis has revealed these genes frequently contain region-specific adaptive polymorphisms. Therefore, the mtDNA with its energy controlling genes may have been retained to permit rapid adaptation to new environments.
ISSN:0066-4154
1545-4509
DOI:10.1146/annurev.biochem.76.081205.150955