Loading…

Metastable extension of the liquid-vapor phase equilibrium curve and surface tension

The method of molecular dynamics has been used to calculate the parameters of liquid-vapor phase equilibrium and the surface tension in a two-phase system of 4096 Lennard-Jones particles. Calculations have been made in a range from the triple point to near-critical temperature and also at temperatur...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2007-06, Vol.126 (21), p.214505-214505
Main Authors: Baidakov, V G, Protsenko, S P, Kozlova, Z R, Chernykh, G G
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The method of molecular dynamics has been used to calculate the parameters of liquid-vapor phase equilibrium and the surface tension in a two-phase system of 4096 Lennard-Jones particles. Calculations have been made in a range from the triple point to near-critical temperature and also at temperatures below the triple point corresponding to the metastable equilibrium of a supercooled liquid and supersaturated vapor. To determine the surface tension, along with a mechanical approach a thermodynamic one has been used as well. The latter was based on calculation of the excess internal energy of an interfacial layer. It has been shown that in accuracy the thermodynamic approach is as good as the more sophisticated mechanical one. Low-temperature asymptotics of the phase-equilibrium curve and also of liquid and vapor spinodals have been considered in the Lennard-Jones and the van der Waals models. The behavior of the surface tension and the excess internal energy of an interfacial layer at T-->0 is discussed.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2734964