Loading…

Ras-dependent cell cycle commitment during G2 phase

Synchronization used to study cell cycle progression may change the characteristics of rapidly proliferating cells. By combining time-lapse, quantitative fluorescent microscopy and microinjection, we have established a method to analyze the cell cycle progression of individual cells without synchron...

Full description

Saved in:
Bibliographic Details
Published in:FEBS Letters 2001-02, Vol.490 (3), p.123-131
Main Authors: Hitomi, Masahiro, Stacey, Dennis W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synchronization used to study cell cycle progression may change the characteristics of rapidly proliferating cells. By combining time-lapse, quantitative fluorescent microscopy and microinjection, we have established a method to analyze the cell cycle progression of individual cells without synchronization. This new approach revealed that rapidly growing NIH3T3 cells make a Ras-dependent commitment for completion of the next cell cycle while they are in G2 phase of the preceding cell cycle. Thus, Ras activity during G2 phase induces cyclin D1 expression. This expression continues through the next G1 phase even in the absence of Ras activity, and drives cells into S phase.
ISSN:0014-5793
1873-3468
DOI:10.1016/S0014-5793(01)02115-9